BMI coursework

Team Error404: Georgios Gryparis, Agnese Grison,
Charalambos Hadjipanayi, Edoardo Occhipinti

Dept. of Bioengineering, Imperial College London

Abstract — In this report the neural spikes of a monkey reaching 8
different target directions were decoded to predict the x and y
hand positions of the movements. Three different classifiers were
implemented: k-Nearest Neighbors (k-NN), Support Vector
Machine (SVM) and Bayesian. Majority voting was used to select
the most likely direction, obtaining a final angle classification
accuracy of 99.75%. Principal Component Regression (PCR) was
used to estimate the x and y hand positions as a function of time
obtaining a Root Mean Square Error (RMSE) of 7.37 +
0. 67 with the optimal number of principal components.

I. DATA & CROSS VALIDATION

The data (D) used to develop our algorithm consists of 800
experiments. Each experiment n contains a trajectory of 2D
hand motion (H = [Hx, Hv]), along with the neural activity from
98 neural units (S) sampled at 1ms intervals. Experiments can
be distinguished into 8 distinct classes (C) representing the
reaching angle of the trajectory. In D, there are 100 experiments
for each class C,, € €. In order to draw meaningful relations
between S and H, the neural data must be reduced to a feature
vector. Two feature representations were investigated, both
based on firing rates. The first representation (f (1)) was
constructed by computing the average firing rate of each of the
98 neural units from the beginning of the experiment (time t=0)
until the time of interest (time t = t). The second, higher
dimensional representation (f(zr)) was constructed by
extracting the 98 spike trains from time t = 0 to t = 1, then
splitting each into bins of size &t, computing the within-bin
firing rates and concatenating the results into a single vector.
The feature extraction process is illustrated in Figure 1.

ne bt

LY
0 Vi1 : VlI : : 1
F 1 T 1
1 N Valt) | 1
ml L™ 0 LI L
T S N7 S R N 7 7
E : 1 : 1 - 1 1]
T 1]
" }0 Vas;r : Vanjz’]l : V‘”LITIMJ : *
st 25t (|- 1)oe [i] 5t

jth

V.= #spikes of i neuroninjth bin V() _ #spikes of it neuron forte [01]
L= ilT) =

bin size T

f(1) = [VM, e Vom e Uy 1, ...,VQS‘%J] f(v) = [V, ...,\‘qu(r)]T

Figure 1 - Feature extraction process for both representations. Floor operator
is denoted by /-/. Analytical expressions are described in Appendix A.1.

Preliminary results showed that representation f outperforms f
in both classification accuracy (Appendix B) and RMSE of the
predicted trajectories (Appendix A.9). Thus, representation f is
used for the rest of this report, unless otherwise specified.

As the position estimation was performed at times that are
multiples of 20ms, bin size 6t=20ms was used for trajectory
regression. For classification, bin sizes of 5t=20ms, 40ms and
80ms were used. Note that updating the classification can only
be performed at times that are multiples of &t and that feature
vector size decreases with larger 8t and increases with larger .

The dataset (D) was split, creating a training set (Dtrain) and a
testing set (Dtest). These were generated randomly for a given
ratio s, = Nirain/ (Neest+Nerain) » While ensuring that the size of

each class within each set (Ncrain and Ncest) Was constant, to
allow for cross-validation (performed using the Monte-Carlo
method, see Appendix A.13). Final evaluation of the algorithm
was performed using an 82-trial dataset provided by Dr Clopath.

Il. TUNING CURVES & POPULATION DECODING

Neurons broadly encode movement direction and orientation.
Tuning curves that plot firing rate vs direction angle for the
training data can be used to determine each neuron’s
preferential direction. The direction of movement can then be
theoretically inferred by the preferred directions of neurons,
weighted by their respective firing rates [1]:

cos (8)\ r —13 (cos (p;)
(sin (0)) - Zi Tmax (sin (pl-))
where 0 is the predicted direction and p; is the preferred
direction for the i" neuron (direction at which its tuning curve

peaks). r is the current firing rate, ro is the baseline firing rate
(tuning curve minimum) and rmax is the peak firing rate.

To optimize population decoding, the neurons that best
represent each preferred direction had to be determined. This
was achieved by inspecting the normalized and unnormalized
tuning curves and quantifying the noise and the strength of the
preferred direction. Population decoding was performed at
t=320ms to 560ms, which represents the full range of possible
classification times since the shortest trajectory in the dataset is
571ms. For s,=0.7, over 20 iterations, mean angle classification
accuracy peaked at t=480ms and was 49.25% (Appendix A.2).

I1l. AVERAGE TRAJECTORY

A naive method of approximating the hand position Hest(t) is to
estimate that it is equal to the average hand position at time t of
all experiments that belong to the same class. The mean

trajectory of class Cx, H*(t), can be estimated by:
ITICk(t) ~ Hf:ain(t) = (1/NC,train) anCkH?ram(t)

where n denotes the experiment index. In order to compute the
average, it was necessary that all trajectories covered the same
length of time. Therefore, the longest trajectory was found for
each angle and the shortest trajectories were padded with the
last x and y hand position values. This method, instead of zero
padding the shorter trajectories, ensured that the average
trajectory did not suffer from erroneous average values or a
reduction in data length. This estimation technique was used to
benchmark the different classifiers. Note that given perfect
classification, this method gives an RMSE of 6.96 with standard
deviation 0.56 over 100 iterations for s,=0.7.

1IV. PCA-LDA & DATA VISUALIZATION

oz ~

* 30 110 180 « 310
* 70 = 150 230 * 350

Figure 2 — Features with 6t=80ms, at t=320ms, using PCA-LDA (Mpca=170,
Mpa=2). Contours of fitted Gaussian distributions included for illustration.
Using Linear Discriminant Analysis (LDA) and Principal
Component Analysis (PCA), separation between classes can be
maximised. LDA is a tool used to transform data, by rotating
the feature space, to find the optimal direction with respect to
class separation. To improve LDA performance, PCA was first
used to reduce the dimensionality of the feature space. To
visualize the data, the feature vectors were projected onto a 2D
subspace (Figure 2). On each cluster a bivariate Gaussian

distribution was fitted using its mean and covariance matrix.

Page | 1

V. K-NN CLASSIFIER

To predict the direction of movement, a simple k-NN algorithm
was employed. At time t, for each feature vector fes(t) in Drest,
the k nearest neighbours were determined from the feature
VECtOrsS firqin(t) in Dain Using Euclidean distance. Then, the
predicted direction was the majority vote of the labels of the
neighbours. Alternatively, the centroid of each class within the
training set £k, () = (1/N¢ train) Sneck fitain(t) Can be
calculated and each testing feature vector assigned with the
label of its nearest centroid. The second method produced
improved results, both in terms of accuracy, as it removes noise,
and classification time (Figure 3) since it requires a smaller
number of comparisons to make a prediction.

kNN with dt=20
(average time per prediction=10ms)
.. Nearest Centroid with dt=20
(average time per prediction=0.11ms)
__ kNN with dt=40
(average time per prediction=7ms)
_ _ Nearest Centroid with dt=40
(average time per prediction=0.09ms)
kNN with dt=80
(average time per prediction=5ms)
____Nearest Centroid with dt=80
(average time per prediction=0.06ms)

Mean Accuracy (%)

~
=}

60 .
1 50 100 150 200 250

Nearest Neighbours
Figure 3- Accuracy vs # Nearest Neighbors (t=320ms, sp=0.7, 20 iterations).
Location of peak is related to Nyain (for sp=0.7, Nyrain=560)

The nearest centroid classifier was optimised by finding a
transformation that maximally separates classes in Dtrain:

Dirain(t) = W(f rain(t) — (1/Nergin) ZneDtmin f?rain(t))

Then: the centroids J’f:ain(t) = (1/Nc,train) ZnEC ¢train:glt(t) can
be found and the testing feature vectors transformed f;es:(t) -
des: (t) SO that each testing feature vector can be assigned with
the label of its nearest centroid in the transformed feature space.
To find W, PCA-LDA was used with a fixed number of LDA
bases (MLpa=7) and a varying number of PCA bases (optimal
Mpca was deduced empirically). Details on PCA-LDA can be
found in Appendix A.3.

The Mpca hyperparameter was optimized with respect to
minimizing the RMSE produced by using the average
trajectory. This metric was chosen since raw accuracy numbers
were insufficient to determine the optimal classification method
(trajectory estimation error is also dependent on the time of
correct classification). A large range of Mpca produced mean
RMSE results within 0.1 of the local minimum for sp=0.7, using
20 iterations (Appendix A.4). The results for Mpca that
minimize RMSE using different 6t are tabulated below.

mean RMSE (Average Trajectory)

132 12.46 11.95 11.24 [IEX5N
126 11.61 11.95 1Y 9.76 |
11.74 110.79 10.92

11 107 10.92

10.9
10.77
10.77
10.69]
10.85 .97 | 8.83
10.74 .97 | 8.83
(ENIN 9.84 (1001 865 | 9.31 | 7.98
5N 977 (1001 865 | 931 | 7.98
AN 963 | 988 | 848 | 911 | 7.96

A B c D E F A B C D E F

Figure 4 —Accuracy (%) and RMSE (Average Trajectory) using Nearest
Centroid. A: 6t=20, no PCA-LDA. B: 6t=20, MPCA = 35. C: §t=40, no
PCA-LDA. D: 6t=40, MPCA=260. E: §t=80, no PCA-LDA. F: §t=80,

MPCA = 170. (MLDA=7 in all cases).
The best result (RMSE using average trajectory: mean = 7.96,
std = 0.79; over 50 iterations) occurs when Mpca=170 and the
label is updated at t=320, 400, 480 and 560ms (5t=80ms).
Further improvements on this classification method would
involve using other distance metrics (Manhattan Distance,
cosine distance, Earth mover distance), and varying Mpa.

Mean Accuracy (%)

V1. SUPPORT VECTOR MACHINE CLASSIFIER

The SVM method aims at finding a hyperplane in the feature
space which allows for maximum linear separation of two
classes of data, thus creating an optimal linear decision
boundary for binary classification.

Multiclass classification was performed using a decision tree
composed of three layers, as illustrated in Figure 5. In the first
layer (Classifier 1), the input angle was classified as “right”
(310° to 70°) versus “left” (110° to 230°). Separating the angles
in Classifier 1 between “left” and “right” was informed by
Figure 2. In the second layer, the angle was classified into
further sub classes (groups of two angles) using Classifiers 2a
and 2b. Finally, the input was assigned a specific predicted
angle using the nearest centroid method described in Section V,
only differing in that the only two centroids used were the ones
corresponding to the two possible binary classification options.
Lf

{310°,350°,30°, 70} | svm

{1107, 150°,190°, 230°}

-1 Model 1 +1
SVM SVM
Madel 2a | {30°, 70° {110°, 150°}] Model 2b
-1 |310°, 350%} +1 +1 {190°, 230%)| -1
| KNN | | KNN | KNN KNN
{3107} {350} {30°} {70°} {110°} {150°} {190°} {230°%}

Figure 5 - SVM decision tree

SVM was implemented using a baseline code provided by Dr.
Clopath. To minimize the risk of overfitting due to outliers
while ensuring margin was as wide as possible, a soft margin
rule was implemented to relax the SVM optimization. A factor
¢ was incorporated to represent the degree of misclassification
allowed. This had the added benefit of increasing the method’s
generalization capability. Initially, the Linear Kernel method
was used. Despite the fast computation of the Linear classifier,
classification performance was not satisfactory (less than 90%
mean classification accuracy at t=320ms, for sp=0.7, details in
Appendix A.5). For this reason, a non-linear kernel was used,
specifically the Gaussian kernel, which allows for non-linear
mapping of data into higher dimensional space, where it is more
likely to be linearly separable. This non-linear approach is
theoretically expected to be at least as good as the linear kernel
[2]. A parameter representing the spread of the Gaussian (o) was
used to control over- and under-fitting of the training set (lower
o results in tighter decision boundary).

Preliminary results (Appendix A.5) showed that, as in the case
of k-NN, using only the mean feature vector of each class to
train the nonlinear SVM resulted in significant improvement in
classification accuracy (as compared to training on all feature
vectors). Thus, the SVM training input was reduced to an 8-
column matrix, which also reduced computation time. When the
mean feature vectors were used, in the final layer there were
only two training data points. Hence, k-NN and SVM decision
boundaries were equivalent, but k-NN was faster. This method
based on the Gaussian kernel produced superior results than the
linear kernel as seen in Appendix A.5.

This method was used both with feature vectors f and the PCA-
LDA transformed feature vectors ¢. To determine the
parameter o: ¢ was set to 1, the unmodified feature vectors (f)
were used, o was varied and the mean accuracy and RMSE
using mean trajectory of the SVM method were recorded over
20 iterations. Then, under the same conditions, o was set to the
optimal value and c was varied. Additionally, the Mpca
hyperparameter was optimised for RMSE using mean trajectory
with the transformed feature vectors ¢ (Appendix A.6). Results
for optimal ¢, o and Mpca (50 iterations) are shown in Figure 6.

Page | 2

Mean Accuracy (%)

mean RMSE (Average Trajectory)

5 420 .21 | 98.61
99.05

9.81

O 460 99.05 | 98.7 99.38 9.8

2480 99.19 | 98.67 99.43 974 | 842 | 923 | 794 |
5 500 99.19 | 98.67 | 99.43 974 842 | 923 | 7.94 |
2 520 99.39 | 98.67 | 99.43 981 83 | 923 | 794 |
£ 540 99.30 | 98.67 99.43 981 | 83 | 923 704

99.52 | 99.03 | 99.53 064 | 817 | 904 | 7.92 |
A B c D E F A B C D E F
Figure 6 - Accuracy and Mean (Average Trajectory) using SVM with
Gaussian Kernel. A: §t=20, 6=0.1, no PCA-LDA. B: §t=20, ¢=0.1,
MPCA=85. C: §t=40, ¢=0.1, no PCA-LDA. D: §t=40, 0=0.1, MPCA=190.
E: 6t=80, ¢=0.07, no PCA-LDA. F: §t=80, ¢=0.07, MPCA=180. (MLDA=7,
c=1and sp=0.7 in all cases). c (0.1-10 range) does not affect results and
(0.05- 0.2 range) only slightly affects results (Appendix A.6).

The best result (RMSE using average trajectory: mean = 7.92,
std = 0.80; over 50 iterations) occurred when ¢=0.07, c=1,
Mpca=180 and the label was updated at t=320, 400, 480 and
560ms (6t=80ms). Further improvements on this method would
involve tuning the ¢ and o parameters together rather than
separately, as well as optimising them independently in each
decision tree layer and for different values of Mpca and My pa.

VIl. BAYESIAN CLASSIFIER

This method computes the conditional probability p(Ck|f) of the
feature vector f belonging to each class Cx and assigns f to the
class with highest probability. To train the classifier, a model
was created for each angle at each time from 320ms to 560ms
in ot time steps. Each model returns the probability of feature
vector f given a class Cy, i.e. p(f|C«). The Bayesian classifier
assumes that the data follows a multivariate normal distribution:

PUIC) = @m) 2 I8 2exp ((—3 (f — TE2(F ~ 1))

where X is the covariance matrix of the training data belonging
to Ck, u its mean and d the length of f. Bayes theory is then
implemented to calculate p(Cy|f):

PICIP(Cy) _ P(fICk) Neg
p(f) p(f) Ntrain

where p(f|Cy) is assumed to follow a multivariate normal
distribution, p(Cy) is the prior probability of class Cx, N¢, is the
number of feature vectors in class k within the training set and
p(f) is independent of the class. The covariance matrix X is
singular since the number of samples is much lower than the
number of dimensions considered. To overcome this issue,
PCA-LDA was implemented to perform dimensionality
reduction on the data, which thus ensured the non-singularity of
Y. The Bayes classifier can be visualised by fitting multivariate
Gaussian distributions on the data, after PCA-LDA, and
plotting their contour lines, as shown in Figure 2 for M pa = 2.
This clearly shows a separation in 8 classes, one for each
possible angle. Figure 7 shows the results obtained over 50
iterations using the Bayes classifier with optimal Mpca
(determined empirically using 20 iterations in Appendix A.7).

p(Clf) =

Mean Accuracy (%) mean RMSE (Average Trajectory)

98.88 98.66 9.15 ! 9.25
98.88 98.66 8.57 8.89 9.25

B 440 99.31 99.3 98.66 8.16 8.27 9.25
O 460 99.36 99.3 98.66 8.08 8.27 9.25
% 480 99.32 | 99.4 | 99.32 8.16 8.18 843
5 500 99.41 99.4 99.32 8.06 8.18 8.43
@ 520 99.23 9922 | 99.32 8.25 | 8.39 8.43
£ 540 99.2 9922 | 9932 8.31 | 8.39 8.43
560 99.35 9944 | 9952 8.2 8.16 8.22

A B c A B c
Figure 7 - Accuracy and RMSE (Average Trajectory) using Bayes Classifier.
A: 6t=20, MPCA=65. B: §t=40, MPCA=69. C: §t=80, MPCA=31.
(MLDA=7 and sp=0.7 in all cases).

The best results for each dt were very close (8.20 for 5t=20ms,
8.16 for 6t=40ms, 8.22 for 6t=80ms). As such, while the best
results occurred for 6t=40ms, a bin size of 80ms could also be
used (resulting in smaller feature vectors and lower
computational complexity). Thus, the scheme ultimately used
with this method had Mpca=31 and the label was updated at
t=320, 400, 480 and 560ms (5t=80ms) (RMSE using average
trajectory: mean = 8.22, std = 0.88; over 50 iterations). Further
improvements on this method involve fitting the data on
different distributions or using hidden Markov models to
determine p(f|Cx), as well as optimizing Mypa.

VIII. MAJORITY VOTING

In all classifiers considered (k-NN, SVM and Bayesian)
dt=80ms was chosen as the optimal bin size. The output of the
three classifiers was combined in a majority voting scheme
where the final class label was predicted based on the most
frequent class label of all methods. This is the primary reason
that three classifier methods were chosen. The final class label
¢ was obtained at 320ms and updated every 80ms by:
C=mode{Cxnn, Csvm Cpayes} - IN cases where all methods
produce different classification outputs (relative frequency of
each predicted class is equal to one), then the final class label
was set to the output of the SVM classifier, which produced the
highest accuracy and lowest RMSE from all classifier methods.

) mean RMSE (Average Trajectory)

| 9933 |
99.43

5500 9943 | 9943 | 9932 9954

@ 520 99.43 99.43 99.32 99.54

E 540 9943 | 9943 99.32 99.54 798 @ 794 8.43 7.73
560 99.54 89.53 99.52 99.75 7.96 7.92 8.22 7.61
A B Cc D A B o} D

Figure 8 - Accuracy and RMSE (Average Trajectory). A: Nearest Centroid,
classifier with Mpca=170. B: SVM classifier with c=1, 6=0.07 and Mpca=180.
C: Bayes classifier with Mpca=31. D: Majority Voting scheme. (In all cases
Mipa=7, 6t=80 and statistics were obtained using 50 iterations and sp=0.7)
As seen in Figure 8, the majority voting scheme was an
improvement over any of the three methods taken individually
(peak accuracy was 99.75% at 560ms and RMSE using average

trajectory: mean = 7.61, std = 0.82; over 50 iterations).

IX. PRINCIPAL COMPONENT REGRESSION

The x and y hand positions can be predicted by implementing a
linear regression model for each angle at each time of interest
(t=320ms to t=560ms in steps of 20ms), which aims to estimate
the regression coefficient B such that:

Y=XB + ¢
where Y corresponds to the centred x and y hand positions at
time t (for each class Ck: ¥ = H%(t) — H(t)), X is the centred
input neural spikes at time t (for each class Ci, X is constructed
by setting each row to a feature vector (f7(t) or f7(t)) and
performing X—»X — X) and £ ~ N(0,02). Such problems are
often tackled using Ordinary Least Square (OLS) estimation:
Bos = (XTX)"1(XTY)

Since the number of dimensions is much higher than the number
of samples, X™X is singular, so OLS solution is intractable.
Additionally, noise in X may introduce spurious correlations in
the calculation of the regression coefficients. To avoid both
these problems, Singular Value Decomposition (SVD) was
used to calculate the r largest principal components and thus
reduce the dimensionality of the data. Specifically, the SVD of
Xis given by X=UXV7, where columns of U are the left singular

Page | 3

vectors, rows of VT are the right singular vectors and X is a
diagonal matrix whose entries are the singular values of matrix
XTX. This method is called Principal Component Regression
(PCR) [3] which is based upon least square regression and
principal component analysis (PCA). PCR solution (Bpcg) is
obtained by:

Bpcr = Vi (Z1,) 2 (U1, Y)

where the subscript (1:7) denotes that the r largest singular
values are used in each of U, X, and V. Then for each testing
feature vector x(t) fed into the algorithm at time t, an angle C,,
was predicted and the appropriate Bpcz (i.e. the weights
corresponding to the predicted angle at time t) were used to
estimate the hand position by:

Y(t) = x(O)"Bper(t, Ci) + HY:,, ()

train

Note that for all t > 560ms, Y (£)=Y(560) (i.€. the last estimation
is retained). Choosing the optimal number of principal
components was essential to perform an accurate regression
model both in terms of RMSE and of computational complexity.
The r was optimized up to (N, — 1), which is the maximum
rank of X"X, as the training data has N¢,, , trials for each angle.
This optimization is performed to minimize the RMSE error
given perfect angle classification. Figure 9 shows the RMSE (50
iterations, sp=0.7) of PCR for r up to 69 principal components.
When comparing the results with the average trajectory method,
PCR performed better for all r. The RMSE decreases with larger
number of components, which suggests that using r=(N,, . - 1)
principal components does not result in overfitting.

7 T T 0.56

——PCR std RMSE
- - - ‘Average trajectory std RMSE|

©~-PCR mean RMSE
Average trajectory mean RMSE

ean RMSE

std RMSE

m
»
N
2 %

@
@

655 0.525
0o 1 2 I 4 % 60 70 0 10 2 3 40 5 6 70

Principal Components (r)
Figure 9 - RMSE plot against increasing number of principal components (r)
up to 69, against the average trajectory benchmark method, with s,=0.7.

Principal Components (r)

Similar trends were observed for different splits (s,=0.5, 0.6,
0.8, 0.9), as shown in Appendix A.8. This means that for dataset
D the maximum number of principal components was needed
to capture the information within the data, i.e. r = (N, — 1)
should be taken for all s,. On the other hand, the first feature
vector representation (f), which spans a lower dimensionality
and whose data is more likely to be correlated showed the
lowest RMSE at r=10 (Appendix A.9). To better comprehend
this behavior, the normalised eigenvalues corresponding to each
angle in the whole dataset for both representations were plotted
(Appendix A.10). From the plots in Appendix A.10, it can be
seen that for £ not all bases were needed to fully capture the
information in X7x (272, A; / 322, 4; = 0.994) whereas for f, all
the principle components (99 in the case of the whole dataset)
were needed (X798, 4; /392, A; = 0.994),

X. NON-LINEAR LEAST MEAN SQUARES (N-LMS)

Alternatively, to find a nonlinear relationship between the
feature vectors and hand position (for each angle at different
times t as in Section 1X), the nonlinear LMS algorithm can be
implemented. This algorithm allows online learning and has
increased expressive power and generalization capability
relative to linear models. These properties are achieved by
introducing a non-linearity to the output of the standard LMS

algorithm. A tanh activation function was used, where the hand
position is estimated from 7 = tanh(wTk), where h represents
X or y coordinate estimates in each model, w is the vector
containing the LMS weights and k= [fT 1]" to account for
bias in the inputs. The hand positions were normalized to [-1,1]
in order to match the range of the tanh function. The learning
rule of the LMS weights is based on stochastic gradient descent:
w(n+1)=wn)+u(h(n) — h(n)) (1 - tanhz(wT(n)k(n))) k(n)
where u is the learning rate and h is the true x or y hand position.
Since the sample size was insufficient to ensure convergence,
the LMS weights were pre-trained by overfitting on 33% of
Dtrain (over 500 epochs). As in Section IX, for all t > 560ms,
Y(t)=¥(560). For optimal p=0.015 (Appendix A.11), given
perfect angle classification, mean RMSE is 6.78 with std=0.52
(50 iterations, sp=0.7), which is inferior to results obtained using
PCR both in terms of RMSE and computational time.

Different activation functions and use of an adaptive learning
rate could improve performance of the N-LMS. Additionally,
adaptive scaling of the activation function could be used to
mitigate normalisation issues. Finally, perceptron models could
be connected in a deep neural network to perform regression.

XI. CONCLUSION

To decode the neural spikes of a monkey in order to obtain an
estimate of the x and y hand positions, Majority voting was used
to classify the angle every 80ms, as described in Section VIII,
with optimal hyperparameters derived throughout the report. At
each time t, the weights B¢ corresponding to the predicted
angle ¢, were used to estimate the hand position using PCR
with r = (N¢,,... — 1). Results for different spare shown below.

Table 1. Mean RMSE and Std vs sp (50 iterations)

Sp 0.5 0.6 0.7 0.8 0.9
Mean RMSE 7.96 773 | 737 | 7.05 | 6.85
Std RMSE 0.57 065 | 067 | 099 | 1.04

Predicted trajectories for a single run of the algorithm (sp=0.7)
are shown in Appendix A.0. The mean computational time for
training the algorithm on the whole dataset D was 26.05s (50
iterations). The mean time needed to predict a single trajectory,
after training on the whole dataset, was 0.15s (Appendix A.12).

Averaging methods employed in this report lose some temporal
aspects of the neural dynamics. Thus, in future iterations
different methods for processing the neural data could be used
to better capture the causality and time dependency within the
spike trains, such as the van Rossum distance metric [4].
Another improvement would be to use the tuning curves to
select optimal neurons both for classification and regression.

XIl. AUTHORS CONTRIBUTIONS

GG and CH: Features f, Tuning curves/Population decoding,
PCA-LDA, k-NN, SVM, Majority Voting. AG and EO:
Features f, Average Trajectory, Bayesian, PCR, N-LMS.

XIll. REFERENCES

[1] Rao, R. P. N. (2013). “Signal Processing,” In: Brain Computer
Interfacing: An Introduction. Cambridge: Cambridge University Press,
pp. 109-148

[2] Keerthi, S. and Lin, C. (2003). Asymptotic Behaviors of Support
Vector Machines with Gaussian Kernel. Neural Computation, 15(7),
pp.1667-1689.

[3] Jolliffe LT. (2002). “Principal Components in Regression
Analysis”. In: Principal Component Analysis. Springer Series in
Statistics. Springer, New York, NY, pp. 167-198

[4] Van Rossum M. (2001)."A Novel Spike Distance". Neural
Computation 13, pp. 751-763

Page | 4

XIV. APPENDIX

Appendix A.0

100 1
80 |
60 1

40 1

— Decoded Position
Actual Position

Y Hand Position (mm)
o

-100 . : : . '
-150 -100 -50 0 50 100

X Hand Position (mm)

Figure 10 — Predicted and True trajectories for a single run (sp=0.7) for all angles. Note that predicted angle updates every 80ms until
t=560ms, which accounts for the sudden changes in direction in a few of the trajectories. These changes in predicted angle only occur for
neighboring directions.

Page | 5

Appendix A.1

S(t) € R®®*¢ is a matrix containing all prior neural activity until time t. The matrix V(t) € R%Xlﬂ was calculated by splitting S(t)
into bins 5t and determining the firing rate within each bin: V; ;(t) = izgiﬂ?t(i—l) St

t T
f(t) e R98[§JX1 was obtained by: f(t) = [Vl_l(t), e Vog 1 (), o V) H(t), s Vg H(t)] , where |-] denotes the floor function.
’Lst. Lst

F(t) € RO was obtained by: F(£) = 25E_4[S,1(8), Syc(2), ., Sog ()]

Appendix A.2

[} o
Angle 1 (30°) Angle 2 (70°)
14 18 21 43 34 - 4 23 34
0.03 7 0.04 = 0014 B 739 002 TR 7 090 28 002 5 7y 006G
/ R 3 00z /X /X o0s| P\ 727 005 ¢ "8
o) Josf o) X [\ / I . 8, \ / [
0.025 o0 - 0.02 ?;(‘()(0.013 | Bgl P bed 001 & S o 4 od o015l s | 0os| A s
0.02 = € == 0.012 == 0015 =0 3 5 : 5 5
4100 0 100 200 4100 0 100 200 4100 0 100 200 4100 0 100 200 4100 0 100 200 100 0 100 200 100 0 100 200~ -100 0 100 200 -100 0 100 200 -100 O 100 200
<107 62 81 0.02 35 410 T4 x10 3&1\%
10 &= 0.016 [zt A 5 @
A 914 o004 /R 2 / F 8
" oo % 8 / w 0.015 &b 8 A L
/ | 0 . Ly S 2 S 4 2 ‘:
B S| 0008 | [J e = === 0==
5% J ~ 0.02 -100 0 100 200 -100 0 100 200 -100 0 100 200
<100 0 100 200 <100 0 100 200 4100 0 100 200
[} o
Angle 3 (110°) Angle 4 (150°)
64 71 7i «10° 6 «10° 10 «10° 11 30 36
0.026 0.015 y 0.02 = G L =N ofp % 6 S, 0014 i) 0.06 sy
: aa 0.02 6 { A n A = S VAR yoos
o 4 o o @ o5\ P K o013 4\ /
/ & @ /)) X s R alp° \ \ & b 004k &
0.024| \ 00t| o9 - 8 ol =y 4 3| & . Joorz] 5 S
0.022 K W, S / S Joos| @ WS |P9PLe 0 100 200 300 0 100 200 300 0 100 200 300 0" 100 200 300 0 100 200 300
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 <10* 38 ©10° 39 40 44 45
2 = 5 —oR 003 2% 0.01 0.03
&) I g7 w o a8
N aad \ A A R |oozs \ |oo0s /A \ /
ped \/ el d 0 bd L7 s
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
72 <10°,_97
0025 P 4 R
) @ A VA Y
0.02), 5% \
0 100 200 300 0 100 200 300
[} o
Angle 5 (190°) Angle 6 (230°)
3 3 28 1 - 2 13 15
me 3.9 7 2§ 0.015 o 0.02 3_\% gy 2 008y
[B g E \ By : o 0012y O 2 =
7 2 o Va b S \ 0.01| &~ \ % f TD_DM% \ # 0‘04%
Bl o e 0 o il Y9 2 N, 0 g bl 00104 s 0.02
100 200 300 100 200 300 100 200 300 100 200 300 100 200 300 320:2 400 20508 400 2””3 40
10° 8 10°
ooz 32 3. 5 53 80 a2 v %% P of
i 2N 002 7 X 002 g F 0018 7 o014| N A\ Bod [R 7
0015| f Beg N O Jjoote]d ey T/ RN 4 IR RS Xl o PR
TR Ny 001 & \ Joots| & N/ |ootal / Hoo13[& € 22 e 001582 & —
0.01= 0 =g =y = 0.012 200 400 200 400 200 400
100 200 300 100 200 300 100 200 300 100 200 300 100 200 300
65 69 70 89
0.03 PR 0.02 s 0015 00—
0.025 7 \ .| A A\ q 0025(/7
% | 00 \ | I
002 2 e N 8 RV o 002 e
100 200 300 100 200 300 100 200 300 100 200 300
o
Angle 7 (310
<10° 8 27 0.01 42 47 S =5 002 A 17
2 VA 004 N : /\ 0.03 N\ \] o2y / ZEW 0.02 X
1 /& oo @ 8 oo0s| /iy 0.025 / Sg_ &9 N/ / R ,)6/ Y=Y
2 4 o0zl b A Seed ook S, : 0.015 5=, 0015
- e = ol 400 200 4
200 300 400 200 300 400 200 300 400 200 300 400 200 300 400 2
56 59 i —=
0.05 0,092 5? 0.02 5‘,& 0.05 52 0450 \ e 0.016 7
e - /A o X 0.04] o] 0.045 /o8 Y /o014l
004 @& 002 4 o [%9he & 0.035| ¢ S | ooaf o 7 \ 2 C
/ G 2 0.01F 0. 4 R | ogashy P £
0,037 599 0.018 [zof = e 2 / 400 200
200 300 400 200 300 400 200 300 400 7200 300 400 200 300 400 55 004
75 ” 80 82 85_ P s
0.06 X 0.045 PaS 003[% 0.02 —R 0.045 e 1 [& |00/ gl 03] A
005 & & 0.04 / Bg e It 0015 ¥\ / S %) / Sef
| &7 Se_ |ods| S, | 002517 \ VA 004l 5 0 002~
004 ol 003 = 002 e = e o
200 300 400 200 300 400 200 300 400 200 300 400 200 300 400
&7 20 L] 92 0015 95
00s5| /7 Ty 0.02 N 0.03 I 006| N\ :
e A e /By |0025 /N # [)
oo SA jeed kg "%ee? R %P Bod ook ed
200 300 400 200 300 400 200 300 400 200 300 400 200 300 400
0.06 —R
005 /é \
.04 A
200 300 400

Figure 11 - Unnormalized Tuning Curves (centered at peak value/preferred direction) for all 98 neurons at time t=560ms, using the all of D.
X axis represents angle, y axis represents firing rate, title represents neuron index

To optimize population decoding, the neurons that best represent each preferred direction had to be determined. This was performed
by first filtering out the unnormalized tuning curves that presented a large ratio of standard deviation of the peak value through trials
over the mean peak value through trials. This metric quantifies the potential error in determining both the peak value and its
respective angle (it was found, that setting a threshold of 0.5 filtered out all highly problematic cases). Subsequently, the two best
normalized tuning curves for each preferred direction were chosen with respect to the difference between the means of the two
largest values, hence quantifying the sharpness of the tuning curve. Only two neurons were chosen per angle since the 110° angle
had only 2 neurons associated with it in most splits of the training data. Normalized tuning curves that satisfy the criterion set (std
at peak over mean peak value less than 0.5) with the accompanying std/mean metric for the complete dataset D are plotted below.
Page | 6

Angle 2 (70°)

34 - 0.14764

Angle 1 (30°)
1 0.22611 1-031909 | 3-022488 4-~015413 2303464
i 2 : -
\4 DSL/@% ’N\q J n.sy”f J 0.5\7.7 f XL)&

&

21 -- 0.36655 4 43 -- 0.29297 54 -- 0.
%]
100 200

0.5

14 -- 0.29653 18 -- 0.15551

1 z 1
‘ O 2 /2 t Y,
05| 4\ 05| o.s/{ﬁ{ &Sg\, 05| o o
S e = - S o ; N ~
Sor c S, o o o 2 o4 4
4000 100 200 100 O 100 200 100 0 100 200 -100 0O

100 0 100 200

0 €
100 200 -100 0 100 200
35 --0.28414 ; 84 --0.39989

0
-100 0 100 200

1 = 1
/J »5%\ 05 J x 05
g S S, 0

0 =4
-100 0 100 200

81 -- 0.14647
0.5

< 0%
-100 0 100 200 =100 0
1 - oW

62 -- 0.3862 1 63 -- 0.32194 4
o= oo
05 Sq 05 /QB)‘ XSN 0.5/ x%* %
) S ' S 0 0=
0k = € ; 0 X 4007 0 100 200 100 0 100 200
<100 0 100 200 -100 O 100 200 -100 O 100 200
e}
Angle 4 (150°)
36 -- 0.14406 40 -- 0.22543 44037734

48 -- 0.21328

Angle 3 (110°)
71 -- 0.27062 78 -- 0.30744 6-- 0A444§8 1 30 --0.3113 4 . 4 1 | L
1 1 \"s\f i 7/ Q\ - 7 \Q} ’\Q\
05 \ §5) \ 05 N A s 05 < \\ 0.5 \él
0 0 0 —C

64 --0.27817
0 100 200 300

p

0 100 200 300

0.5

1— 1 Sy
X
Va | %® &
! o [SPY e
S 0

9 -- 0,25054

05 _

45 -- 0.25362

1 1
l"\ -~ 2 05 @
05 v & 05 &@\ 0 \\ .
A\ g ,Q‘() 0 100 200 300 0 100 200 300 0 100 200 300
72 -0.2614 97 - 027273

T 0 100 200 0~ 100 200

0t
0 100 200
0 100 200 300

0 0 100 200 300 0 0 100 200 300
Angle 6 (230°)
41018016 58030844

13 -- 0.33495 15 - 0.35571

= ol— ' ok
0 100 200 0 100 200 1 e 1 SO 1 o
D.EL x JD.S{ %ﬁ ﬂn,sLAfk \Xy J
>0 R R NES .

5

0.5 H

20 -- 0.47319 24 -- 0.48598

Angle 5 (190°%)
28 - 0.32679 31 - 0.14027 , 2=03MOTL)
7S ‘os}" ~ 7‘ 057\ ‘ ‘ \ Pod)
oA y
"z [
200 400

25 -- 0.48598
===css e 1 >
05 \ 7 05 - 0.5 05|/ @
S o el o - == be ol o "
200 400 200 400 200 400 200 400
86 -- 0.22425 88 - 0.20107 93 - 0.30347 94 - 0.21812
1 = T 1—~‘-—'—|‘) 1 = 1 P

1 25 ==
0.5 @ e os \ 7
0 0 S 0
100 200 300 100 200 300 100 200 300 100 200 300 100 200 300
, 32029716 , 33043535 | 50--027088 ;53032085 ;60 --03333 83 -- 0.46306
ok SV =Ny \
D.5|f “QJ u.sL@ﬂ/\ ‘ 0.5’(% Nﬂ 0.5L‘ S?‘/ \3% D.5}C\/ ’&4 \ | %% 08 | o8
s N) == - B¢ ol 0E— = w
0 100 200 300 0 100 200 300 0 100 200 300 o 100 200 300 0 100 200 300 20 400 200 400 200 400 200 400
|65 ~0.22491 | 69043549 70 - 0.4171 89 -- 0288
h h e B
0.5 S| 05 0.5 | 0.5 w(y e
0'e= 0 = 0 f@ E
100 200 300 100 200 300 100 200 300 100 200 300
o o
Angle 7 (310°) Angle 8 (350°)
27 - 018402 42-039162 47--022413 51--026415 56019984 5m03T721 7020005 12-03% 1603341 17026227
\ \ Y 2aS)
% \ 9 5 yo
0s| x&‘ 05 &* 05 Sa. 05 S 05 \ 05 ﬁ o8 05 / \ o “X / o / %Q os| Y\
S E S - - o W - = . 1% \ -~
Y YN N U@éﬁ@ Sy ke R ok Wee Db& IR o & R o U;/ &8,
200 300 400 200 300 400 200 300 400 200 300 400 200 300 400 200 400 200 400 200 400 200 400 200 400
57 - 0.27082 59 - 0.17811 61 -- 0.2047 67 - 0.18434 75 - 0.18571 19 -- 0.30761 22 - 0.22682 26 --0.38193 29 - 0.22531 37 -- 0.20291
1 1 i b 1 Py 1 = 1 R e 1= 1 7{ 1 Py
\ \ > G \ £S5} \ \
0.5 % 05 A 05 . | 08 , 524 05| £ 05 05 S 05 S 05| ¢ o 05| \
/ e f 4 21 g e x‘gi 2 Sea e f@ Pe® &a,
= Se S 0 0 0 = 0 0 5 0 20 5 0
200 300 400 200 300 400 200 300 400 200 300 400 200 300 400 200 400 200 400 200 400 200 400 200 400
77 - 020125 80 -- 02735 82 -- 0.33781 85 - 0.20546 87 --0.141 55 - 048174 66 -- 23449 65 - 924711
1 1 . 1 = 11— T 7eg ! ’%g%a ! S,
- N \ S, T8 & Se ~oq
05 \69 05 @}‘)(‘4 05 ‘/@/ Pg& 05 / Ry 05 ‘7(X& o 0‘5@ S 08 o8 / 9
o N 2 I) e
0'eE =0 8o S = —& 0 s %200 400 %200 400 %200 400
200 300 400 200 300 400 200 300 400 200 300 400 200 300 400
1 90 - 0.26874 1 91 -- 0.25049 ’ 92 -- 0.14623 1 95 -- 0.28118 1 98 -- 0.13905
0.5 R 0.5 Q 05 Z \é 05 \ 05%77 \
. 5 X N . . X | 05l -
ot o bed & 5 i e o Kca@ @& 5
200 300 400 200 300 400 200 300 400 200 300 400 200 300 400

the std/mean metric

0
Figure 12 — Normalized Tuning Curves (centered at peak value/preferred direction) for the 86 neurons satisfying criterion set, at time t=560ms, using the all of D.
X axis represents angle, y axis represents normalized firing rate (such that maximum is 1 and minimum is 0), title represents neuron index along with the value of

The 2 neurons for each angle were chosen automatically at each time (t=320ms to t=560ms in steps of 20ms), based on satisfying
the std/mean threshold of 0.5 in the unnormalized tuning curves and maximizing the largest to second-largest distance in the

normalized tuning curves. Population decoding results using these neurons over 20 iterations are shown below:

Accuracy (%)
& &
T

8

32 /‘
£ — L L | I
350 400 450 500 550 600
Classification time (ms)

Figure 13 - Mean Classification Accuracy vs Classification time (s,=0.7, 20 iterations). Peak is 49.25% at 480ms.

Page | 7

Appendix A.3

Linear Discriminant Analysis (LDA) finds the optimal direction to separate data of different classes by rotating the feature space.
LDA is applied to the output (the weight matrices) of the PCA technique. The first step is to calculate the mean (m;) of the individual
classes as well as the overall mean feature vector (#2). Then, the between class scatter matrix (Sg) and the within-class scatter matrix
(Sw) are calculated according to the following equations:

c

Sp=) (my— i) (my —)"

c

Sw = Z Z(x_mi) (x —my)"

i=1 x€c;

where X is every feature vector of the training set. Whilst PCA increases data variance both in Sg and Sw, LDA only increases data
variance Sg and minimises the within class variance Sw. The optimization problem can be described by the following equations:

Wpcs = argmax,, |WTS;W|

wrS,w

Wpas = argmaxy, WIS W
w

Where St is the total scatter matrix S = S + Sy .

In the case of LDA, to find the direction that separates the data in different classes, we aim to maximise the numerator W7 S;W and
minimising the denominator WS, W. PCA is implemented to reduce the dimensionality of the data, keeping the Mpca eigenvectors
with the largest eigenvalues, and then performing LDA. The solution to the PCA-LDA algorithm becomes:

('/VPCAT‘S‘WI’VPCA)_1 (WPCATSB WPCA)W =W

Wo_pa is obtained by keeping the Mcpa eigenvectors of W with the largest eigenvalues. In the end the two methods are combined
according to the following transformation:

T _ T T
Wope = Wipa Wpea

Page | 8

Appendix A.4

Mpca

Mpca

Mpca

No PCA-LDA

320

97.9 9778 [or8 T o780
97.76 98.43 98 47 9852 98.76
97.99 98 46 98.53 98 66 98.79
08.11 98.51 98.53 9858 | 876
a7.81 98 55 98.61 9864 a8.75
67.99 98.56 98.71 98.7 9.6
o7.78 9849 98,69 9862 98.89
96.54 98.72 98.62 85.78
98.58 98.72 96.64 98.78
96.55 98.61 96.68 9878
97.74 98.48 98.61 98.58 98.86
97.74 Cikid 98.51 98.6 98.72 98.86
98.54 98.51 98.65 98.87
97.76 98.53 98.56 98.64 98.94
98.49 98,51 9858 | 0883
87.73 98.52 98,52 9861 98.85
98.58 98.56 98.54 98.81
98.58 98.51 98.52 98.74
98 54 08.44 98.43 98.74
98.5 98,45 96.51 88.69
98.59 98.45 98.47 96.64
9853 98.4 98 35 9861
87.77 o777 98.4 98.46 96.48 98.7
97.76 97.76 98.36 98.46 98.54 98.69
97.86 98.26 98.52 98.49 98.6
97.8 97.95 98.3 98,49 9855 98.77
98 96.42 98.52 98.53 88.71
98.09 98.38 98.4 98.36 98.61
97.84 98.15 98.41 98.46 9839 987
9 97.76 98.16 98.41 98.48 98.42 98.67
a7.75 98.2 98.41 98.46 98.44 98.47 98.64
98.15 98.42 98.54 98.41 98.48 98.6
a 98.15 98.41 98.46 98.35 98.53 98.65
98.03 98.4 98.54 98.38 9854 98.6
9817 98.38 98.41 98.4 98.54 98.48
98.02 98.35 98.41 98,46 985 98.57
08.05 98.39 98.3 968.4 98.5 98.63
98.01 98.34 98.36 98.38 9852 98.47
07.94 98.19 98.22 98.38 98.42 86.46
97.91 98.23 9815 98.38 98.44 98.45
98.01 98.13 98.09 98.39 98.54
07.86 97.98 9816 98.08 98.44 88.46
340 360 380 400 420 480 480 540 560
Classification Time

98.53 98.53 98.62

98.56 98.56 98.66

98.36 98.39 98.39 98.48 98.48 98.64 98.64 99.04

98.54 98.52 98.52 98.65 98.65 98.71 98.71 99.09

98.64 98.56 98.56 88.76 98.76 98.8 98.8 99.12

98.65 98.74 98.74 98.98 98.98 98.86 98.86 99.16

98.53 98.78 98.78 99 99 98.94 98.94 99.13

98.49 98.78 98.78 99.06 99.06 98.96 98.96 99.05

98.64 98.81 98.81 99.07 99.07 99.04 99.04 99.05

98.51 98.8 98.8 99.04 99.04 98.92 98.92 99.14

98.48 98.75 98.75 99.1 99.1 98.89 98.89 99.11

98.42 98.73 98.73 99.15 99.15 98.97 98.97 99.11

98.5 98.71 98.71 99.07 99.07 98.99 98.99 99.12

98.6 98.73 98.73 99.08 99.08 98.99 98.99 99.14

98.53 98.79 98.79 99.03 99.03 99.01 99.01 99.14

98.52 98.84 98.84 99.04 99.04 98.98 98.98 99.14

98.44 98.79 98.79 98.98 98.98 99.01 99.01 99.11

88.48 98.82 98.82 88.95 98.95 98.99 88.99 99.15

88.45 98.81 98.81 88.95 98.95 98.98 98.98 99.1

98.43 98.94 98.94 98.98 98.98 99 99 99.2

98.45 98.85 98.85 99.01 99.01 99.05 99.05 99.15

98.59 98.75 98.75 98.98 98.98 99.07 99.07 99.14

98.58 98.77 98.77 99.01 99.01 99.14 99.14 99.21

98.68 98.72 98.72 99.05 99.05 99.28 99.26 99.29

98.63 98.77 98.77 99.04 99.04 99.26 99.26 99.33

98.53 98.75 98.75 99.02 99.02 99.35 99.35 99.33

98.53 98.8 98.8 99 99 99.3 993 99.35

98.64 98.78 98.78 99.04 99.04 99.28 99.28 99.39

98.56 98.8 98.8 99.06 99.06 99.34 99.34 99.35

98.6 98.77 98.77 99.06 99.06 99.31 99.31 99.34

98.59 98.89 98.89 89.05 99.05 99.29 99.29 99.36

98.65 98.78 98.78 99.05 99.05 99.28 99.28 99.32

98.65 98.82 98.82 99.02 99.02 99.25 99.25 99.37

98.55 98.83 98.83 99.05 99.05 99.26 99.26 99.4

98.49 98.9 98.9 98.91 98.91 99.32 99.32 99.39

98.61 98.95 98.95 99.05 99.05 99.23 99.23 99.37

98.53 98.93 98.93 99.03 99.03 99.28 99.26 99.37

88.53 98.87 98.87 88.99 98.99 99.17 8917 99.38

98.56 98.81 98.81 98.95 98.95 99.1 99.1 99.27

98.42 98.73 98.73 98.94 98.94 99.11 99.11 99.29

98.39 98.8 98.8 98.97 98.97 99.01 99.01 99.32

98.34 98.8 98.8 98.96 98.96 99.03 99.03 99.22

420 440 460 480 500 520 540 560

Classification Time

98.71 98.71 98.71 99.21

98.92 98.92 98.92 99.2

99.16 99.16 99.16 99.16 99.53

99.24 99.24. 99.24 99.24 99.67

99.28 99.28 99.28 99.28 99.69

99.3 99.3 993 99.3 99.73

99.29 99.29 99.29 99.29 99.62

99.28 99.28 99.28 99.28 99.53

99.33 99.33 99.33 99.33 99.58

99.20 99.29 99.29 99.20 99.58

99.32 99.32 99.32 99.32 99.47

99.31 99.31 99.31 99.31 99.53

99.32 99.32 99.32 99.32 99.53

99.25 99.25 99.25 99.25 995

99.3 99.3 993 99.3 99.48

99.3 99.3 99.3 99.3 99.52

99.35 99.35 99.35 99.35 99.49

99.42 99.42 99.42 99.42 99.55

99.41 99.41 99.41 99.41 99.55

99.35 99.35 99.35 99.35 99.54

99.37 99.37 99.37 99.37 99.58

99.32 99.32 99.32 99.32 99.59

99.3 99.3 99.3 99.3 99.64

99.35 99.35 99.35 99.35 996

99.32 99.32 99.32 99.32 99.55

99.29 99.29 99.29 99.29 99.53

99.35 99.35 99.35 99.35 995

99.44 99.44. 99.44 99.44 99.57

99.33 99.33 99.33 99.33 99.49

99.32 99.32 99.32 99.32 99.6

99.29 99.29 99.29 99.29 99.6

99.21 99.21 99.21 99.21 99.57

99.18 99.18 99.18 99.18 99.5

99.18 99.18 99.18 99.18 99.48

99.17 99.17 99.17 99.17 99.37

99.24 99.24. 99.24 99.24 99.34

99.15 99.15 99.15 99.15 99.32

99.01 99.01 99.01 99.01 99.33

98.98 98.98 98.98 98.98 994

98.94 98.94 98.94 98.94 89.3

99.00 99.09 99.09 99.00 99.37

98.94 98.94 98.94 98.94 99.27

340 360 380 400 420 440 460 480 500 520 540 560

Figure 14. Mean classification accuracy for k-NN over 20 iterations.

Classification Time

From top to bottom: o7 = 20, 40, 80.

8.5

97.5

96.5

95.5

98

97.5

97

96.5

98.5

98

97.5

97

96.5

Page |9

No PCA-LDA

Mpca

230
240
250
260
270
280
290
300
310

11.73

11.62

11.83

11.75

11.76

11.82

12.16

12.06

11.91

12.04

1288 | 12

12.09

12.05

12.12

11.98

12.25

12.01

12.07

12.2

12.12

1289 | 12

12.04

12.16

12.2

12.16

11.98
11.99
12.04

12.12

12.3

12.22

12.49 | 12.29
320 340 360 380

Mpca

400
Time of last Classification

420

No PCA-LDA [11.21]11.21 [11.21

440

460

480

9.96
10.14

8.96
10.14
9.62

N

I w
PUL Ro =B

10.58

10.58

10.58

© oo

10.58

10.83

10.83

10.83

10.83

11.15

11.15

1115

1115

11.53

11.53

11.53

11.53

11.9

11.9

1.9

1.9

12.16

12.16

12.16

12.16

320

340

360

380

400
Time of last Classification

Figure 15. Mean RMSE for k-NN over 20 iterations. Top left: 6t = 20ms. Top-right: 5t= 40ms. Bottom-left: 5t= 80ms.

420 460 480 560

Minimum for 5t=20 occurred at Mpca=35, for 6t=40 at Mpca=260, for 6t=80 at Mpca=170 with (MLDA=7 in all cases). With 5t=80
and Mpca=170 producing best results. Note that within each heatmap, multiple values of Mpca produce results within 0.1 of the

minimum.

Page | 10

Appendix A.5

Comparison of Linear vs Gaussian kernel for SVM, using all feature vectors or mean feature vectors. For all cases considered,
t=320ms, 6t=20ms, sp=0.7 and 20 iterations were used to obtain the statistics shown.

e When all feature vectors were used, the training input was 70 x 8 = 560 feature vectors. The first 2 layers of the decision
tree function as shown in Figure 5. However, in the 3 layer the nearest centroid classifiers were replaced with SVM
classifiers (whose training input was 70 x 2 = 140 feature vectors). Both the Linear and Gaussian kernels performed much
worse than the k-NN classifiers (compare values in Figure below to results in Section V). Hence, this method was
abandoned in favour of using the mean feature vectors as inputs (similarly to the case of k-NN in Section V).

0.1

0.5

Sigma

LINEAR

0.1 1 10 100 500
C

Figure 16 — Comparison of Performance of Linear Kernel SVM vs Gaussian Kernel SVM when all feature vectors are used for different c, o values.
Linear kernel performance is shown on last row (t=320ms, 6t=20ms, sp=0.7 and 20 iterations).

e When only the mean feature vectors were used, the training input was 8 feature vectors. The classifier was structured as
shown in Figure 5. The performance for the Gaussian kernel is extensively covered in Section VI as well as in Appendix
A.6. For the Linear kernel, the mean accuracy was found to be 72.46% for c=1 (where, as in the Gaussian case for mean
vector input, the influence of c on RMSE is minor). Results for both kernels using both types of inputs are tabulated below:

Table 2 — Comparison of all methods considered for SVM (t=320ms, 6t=20ms, sp=0.7 and 20 iterations)

Method Mean accuracy (%)
Linear kernel with all feature vectors (c = 1) 84.13
Gaussian kernel with all feature vectors (¢ =10, 0= 1) 83.29
Linear kernel with mean feature vectors (c = 1) 72.46
Gaussian kernel with mean feature vectors (c = 1, o = 0.1) 95.84

As seen in Table 2, when all feature vectors are used for training, the Linear and Gaussian performances are comparable.
However, when the input is converted to the mean feature vector for each angle, the performance of the Gaussian kernel
increases and the performance of the Linear kernel decreases.

Page | 11

Appendix A.6

kNN 96.55 97.04 97.18 1 KNN

0.02 74 28 2 24.2 2457 2461 2463 € 7 0.02 23.96 24.23 24.23 2428 2428 24.5 24.5 2453 2453 24.64 24.64

0.05 96.55 97.05 97.19 1 0.05
% . % o 98-34
0.2 0.2
0.5 .5 9699 96.95 97.26 96.89 96.52 96.51 964 96.22 96.05 95.88 0.5 94.6 |96.88 96.65 96.75 96.75 96.85 96.85 96.09 96.25 96.23 96.23 95.86
1 £ 96.18 96.28 96.46 96.71 96.34 96.18 96.01 96.06 95.81 95.56 95.42 1 94.4 9B.76 96.73 96.53 96.36 96.48 96.52 96.03 96.01 95.84 95.85 95.45
320 340 360 380 400 420 440 460 480 500 520 540 560 320 340 360 380 400 420 440 460 480 500 520 540 560
Classification Time Classification Time

[ULN 97.38 97.38 97.38

0.02

0.03

0.04

0.05

97.34 9735 97.13 97.11 97.1 97.08 96.81

320 340 360 380 400 420 440 460 480 500 520 540 560
Classification Time

Figure 17 - Mean classification accuracy for SVM over 20 iterations with c=1 for different values of o (denoted by s, in the heatmap y-axis)
Top left - §t=20, Top right - §t=40, Bottom §t=80

Page | 12

kNN |13.13

0.02 | 90.66 | 80.62 | 90.59 | 90.58 | 80.57 | 90.54

90.54 | 90.55 | 90.56 | 90.56

90.57 | 90.57 | 90.57

0.05 | 13.1 0.8 0 0.34 6 9 66
S 01 9 9 02 10 064 10.28 10 0 059 1062 10.49
0.2 94 9 1062 10.63 10.36 10 0 0.4 0.36 1046 10 0.4
0.5|13.94 n 48 0 0 0
1[14.43 1842 13.03
320 340 360 380 400 420 440 460 480 500 520 540 560

Time of last Classification

kNN

0.02

0.03

0.04

0.05

s2

0.06

0.07

0.08

0.09

0.1

0.2

320 340 360 380

8.72

8.72

8.7

8.65

8.55

8.43

8.5

8.61

400

8.72

8.72

8.7

8.65

8.55

8.43

8.5

8.61

420

kNN

90.46

0.02 90.47

0.05

0.2

0.5

320

872 8.72

8.72

8.7

8.65

8.55

8.43

8.5

8.61

440

340

360

893 893

380

8.93

8.93

8.91

8.9

8.89

8.8

8.98

9.01

9.22

10.16

12.07

400 420 440 460 480 500 520 540 560

Time of last Classification

8.93

8.93

8.91

8.9

8.89

8.8

8.98

9.01

9.22

460

480

Time of last Classification

Figure 18 - Mean RMSE for SVM over 20 iterations with c=1 for different values of ¢ (denoted by s, in the heatmap y-axis).
Top left - §t=20, Top right - §t=40, Bottom §t=80

500

520

540 560

Minimum for 5t=20 occurred at ¢ = 0.2, for 6t=40 at ¢ = 0.1 and for 5t=80 at ¢ = 0.07. All values of ¢ in the [0.05 — 0.1] range
produced very similar results. For convenience, at 6t=20 the ¢ chosen was 0.1 (which is acceptable since the results between ¢=0.1
and o = 0.2 vary by only 0.02 in mean RMSE.

Page | 13

96.71

9717 9748 9782

96.07

9697 9729

96.09

96.09 96.97

320 340 360 400 420 440 460 480 520 540 560

Classification Time

98.16 98.16

97.29

98.37 98.37

360 380 400 420 440 460 480 500 520 540 560

Classification Time

320 340

kNN

0.01

0.1

480 500

520

320 340 360 380 400 420 440 460 540 560

Classification Time

Figure 19 - Mean classification accuracy for SVM over 20 iterations for
different values of c. From top to bottom: (6§t=20, 0=0.1), (6t=40, 0=0.1),
(6t=80, 0=0.07)

kNN | 13.22 | 12.88 6 109 0 0 0.49 10 0 0.56 10.59 10.48
0.01 | 12.89 [12.51 0 0.39 10 0.46 10.46 10.48 10.54 10.54 10.44
0.1]12.89 | 12.48 0 0.4 0 0.4 0.4 0.48 10.54 10 0.4
o
1]12.91 |12.48 4 0 0.4 0 0.46 10.4 0.48 1054 10 0.44
51292 | 125 4 0 04 10 046 10.47 10.48 10.54 10 0.44
10| 128 | 125 4 0 04 10 0.46 10.4 0.48 10.54 10 0.44
320 340 360 380 400 420 440 460 480 500 520 540 560
Time of last Classification
kNN | 11.36 | 11.36
0.01 {10.81 | 10.86 ik PN (0N
0.1/10.82 | 10.82 WU5PAN(RK]
o
1 (10.71 [10.71 RIRENE R
5(10.85 | 10.85 [le)-3 i (0F2]
10 | 10.85 | 10.83 [[e}-4 I (0F-4]
320 340 360 380 400 420 440 460 480 500 520 540 560
Time of last Classification
kNN | 11.06 [11.06 | 11.06 | 11.06
0.01 (10.88 | 10.8 |10.79 | 10.87
0.1/10.81 | 10.81 [10.81 | 10.81
o
1]10.72 [10.72 | 10.72 | 10.72
5/10.88 | 10.88 | 10.88 | 10.89
10 |10.88 | 10.88 | 10.88 | 10.88
320 340 360 380 400 420 440 460 480 500 520 540 560
Time of last Classification
Figure 20 - Mean RMSE for SVM over 20 iterations for different values of ¢. From

top to bottom: (6§t=20, 0=0.1), (6t=40, 0=0.1), (6t=80, 0=0.07).

There is negligible variation in results for all values of ¢ from 0.01 to 10. c=1 was chosen for all cases for convenience.

Page | 14

No PCA-LDA

%85

975

o7

320 340 360 380 400 420 440 460 480 500 520 540
Classification Time

97.91
9801 98.01

| 9932 | 9932 | | 9932 |
| 99.42 | 9942 | 09.42 | 90.42 |

98.03 9801
98.02

320 340 360 380 400 420 440 460 480 500 520 540 560
Classification Time

Figure 21 - Mean classification accuracy for SVM over 20 iterations with 6=0.1, ¢ = 1, M pa = 7, for different values of Mpc.
Left - (6t=20, 0=0.1), Right - (6t=40, ¢=0.1), Bottom - (6¢t=80, ¢=0.07)

Page | 15

Mpca

No PCA-LDA
10

160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

12.06 |

12.18

12,02 |

11.8

11.79

11.79
1.n

11.73
n.z2
11.78
11.86
11.94

12
12.09
12.05
12.16
12.04
11.98
12

12.06
12.01
12.07
11.81
11.99
12.05
11.98
11.95
11.99
11.98
12,12
12.04
12.07
12.02
11.93

12.15

12.08
121

12.03

12.16
1.7

11.75 | 1
1203 |

420 440 460
Time of last Classification

No PCA-LDA [11.09] 11.08 | 11.08
101116 /11.16 | 11.16 | 11.16 |
15
20
25 1041 1041 1041
30 10 10 1002
35 976 075 9.75
40 973 973 973
45 957 057 957
50 064 964 964
55 972 972 9.72
60 962 062 062
85 95 048 05
70 948 048 9.48
75 931 933 931
80 9:37] 0470
85 926 926 926
90 931 929 929
95 905 907 9.07

100 9056 9.05 9.05
§ 105 916 916 9.16
< 110 9,06 9.06

120 9 9

130 8.98 8.98

140 9.07 9.07

150 935 9.35

160 9.17 9.17

170 938 9.38

180 9.31

190 9.5

200 956

210

220

230

240

250

260

270

280 | 10.78 | 10.81 | 10.78 | 108 |

290 [11.09 | 11.14 [11.09 [11.07 |

300 | 11.47 | 11. 7

310

320 340

360

540

380

560

400

No PCA-LDA [11.11 [11.13 |
10| 11.72 | 11.72
15| 10.84 | 1084

:

440
Time of last Classification

380 400 420 460

540

420 440 460 480 560

Time of last Classification

520

Figure 22 - Mean RMSE for SVM over 20 iterations with ¢ = 1, M pa = 7, for different values of Mpca
Left - (6t=20, 0=0.1), Right - (§t=40, 0=0.1), Bottom - (§t=80, 0=0.07)

Optimal hyperparameters: for 5t=20, (6=0.1, MPCA=85), for 5t=40, (6=0.1, MPCA=190), for 5t=80, (c=0.07, MPCA=180). Note
that within each heatmap multiple values of Mpca produce results within 0.1 of the minimum.

Page | 16

Appendix A.7

9 98.69 | 98.83 | 98.86 | 99.01 | 99.24
11 98.73 | 98.95 | 98.89 | 99.03 | 99.26
13 98.79 | 98.81 | 98.93 | 99.01 | 89.2
15 98.85 | 99.04 | 99.02 | 99.05 | 99.19
17 98.88 | 99.07 | 99.03 | 99.05 | 99.28
19 98.9 | 99.09 | 99.04 | 99.01 | 99.26
21 99.02 | 99.15 | 99.07 | 99.04 | 99.25
23 98.97 | 99.16 | 99.07 | 99.11 | 98.25
25 99.03 [99.18 | 99.06 | 99.15 | 99.28
27 99.03 | 99.2 | 99.07 | 99.11 | 99.32
29 99.06 | 99.21 | 99.14 | 99.2 | 99.36
31 99.08 | 99.23 | 99.11 | 99.17 | 99.36
33 99.13 | 992 | 99.19 | 99.19 | 93.39
35 99.08 [99.22 | 99.19 | 99.2 [99.36
® 37 99.15 | 99.29 | 99.19 | 99.22 | 99.36
2 39 99.18 [99.31 | 99.22 | 99.21 | 99.36
= 41 99.19 | 99.36 | 99.25 | 99.26 | 99.41
43 99.17 | 99.34 | 99.32 | 99.25 | 99.39
45 b 99.06 99.16 | 99.29 | 99.27 | 99.27 | 99.44
47 98.94 | 99.09 | 99.19 | 99.16 | 99.33 | 99.29 | 99.35 | 99.47
49 98.91 | 99.17 | 99.23 | 99.19 | 99.3 [99.33 | 99.33 [99.51
51 98.92 | 99.17 | 99.27 | 99.17 | 99.29 | 99.32 | 994 [995
53 98.9 | 99.19 | 99.25 | 99.18 | 99.29 | 99.33 | 99.42 | 99.52
55 98.95 | 99.17 | 99.26 | 99.25 | 99.31 | 99.32 | 99.41 | 99.53
57 99.02 | 99.21 | 99.25 | 99.25 | 99.31 | 99.27 | 99.41 | 99.52
59 99 99.24 [99.25 | 99.22 | 99.37 | 99.3 [99.39 [99.51
61 99.05 | 99.25 | 99.28 | 99.25 | 99.35 | 99.31 | 99.28 | 99.48
63 99.11 | 99.28 | 99.31 | 99.26 | 99.34 | 99.3 | 99.34 | 99.49
65 99.08 | 99.22 | 993 | 99.31 | 99.35 | 99.36 | 99.33 | 99.53
87 99.08 | 993 | 99.28 | 99.31 | 99.34 | 99.31 | 99.35 | 99.52
69 99.11 | 99.25 | 99.28 | 99.29 | 99.34 | 99.28 | 99.36 | 99.49
320 340 360 380 400 420 440 460 480 500 520 540 560
Classification Time
9 : 97.55 97.55 98.48 | 08.48 | 98.54 [9854 | 98.78 | 98.78 | 99.18
LRl 96.58 . 97.72 97.72 98.72 | 98.72 | 98.63 | 98.63 | 98.88 | 98.88 | 99.22
13 PR 96. 97.81 97.81 98.74 | 98.76 | 98.76 | 98.79 | 98.79 | 98.89 | 98.89 | 99.22
15 : 98.73 | 98.78 | 98.78 | 98.82 | 98.82 | 98.92 | 98.92 | 99.26
17 98.68 | 98.92 | 98.92 | 98.8 | 98.8 | 99.01 | 99.01 | 99.32
19 98.75 | 98.98 | 98.08 | 98.92 | 98.92 | 98.98 | 98.98 | 99.3
21 98.78 | 98.78 | 99.07 | 99.07 a9 a9 99.02 | 99.02 | 99.34
23 98.81 | 98.81 | 99.05 | 99.05 | 98.99 | 98.99 | 99.03 | 99.03 | 99.41
25 98.86 | 98.86 | 99.11 | 99.11 99.1 99.1 99.08 | 99.08 | 99.41
27 98.93 | 98.93 | 99.16 | 99.16 | 99.16 | 99.16 | 99.04 | 99.04 | 99.37
29 98.92 | 98.92 [99.1 | 99.1 | 99.16 | 99.16 | 98.98 | 98.98 | 99.35
31 98.96 | 98.96 | 99.19 | 99.19 | 99.19 | 99.19 | 99.01 | 99.01 | 99.33
33 98.92 | 98.92 | 99.17 | 99.17 | 99.18 | 99.18 | 98.98 | 98.98 | 99.36
35 98.96 | 98.96 | 99.19 | 99.19 | 99.15 | 99.15 | 98.98 | 98.98 | 99.32
® 37 98.97 | 98.97 | 99.2 | 99.2 |99.25 | 99.25 | 98.97 | 98.97 | 99.34
& 39 98.99 | 98.99 | 99.27 | 99.27 | 99.26 | 99.26 99 99 | 99.37
= m 98.96 | 98.96 | 99.24 | 99.24 | 99.28 | 99.28 | 99.07 | 99.07 | 99.41
43 98.95 | 98.95 | 99.22 | 99.22 | 99.29 [99.29 | 99.09 | 99.09 | 99.4
45 99.23 | 99.23 | 99.31 | 99.31 | 99.06 | 99.06 | 99.42
47 99.25 | 99.25 | 99.31 | 99.31 | 99.04 | 99.04 | 99.39
49 98.43 | 98.92 | 98.92 | 99.19 | 99.19 [99.31 [99.31 | 991 | 99.1 | 99.42
51 98.45 | 98.94 | 98.94 | 99.21 | 99.21 [99.32 | 99.32 | 99.16 | 99.16 | 99.42
53 98.39 | 98.89 [98.89 | 99.2 | 99.2 [99.33 | 99.33 | 99.18 | 99.18 | 99.46
55 984 | 98.9 | 989 | 99.24 | 99.24 | 99.32 | 99.32 | 99.18 | 99.18 | 99.45
57 99.2 | 99.2 [99.31 | 99.31 | 99.16 | 99.16 | 99.45
59 99.23 | 99.23 | 99.31 | 99.31 | 99.16 | 99.16 | 99.46
61 99.25 | 99.25 | 99.36 | 99.36 | 99.14 | 99.14 | 99.48
63 99.31 | 99.31 | 99.36 | 99.36 | 99.19 [99.19 | 99.47
65 99.27 | 99.27 | 99.34 | 99.34 | 99.24 | 99.24 | 99.49
67 99.29 | 99.29 | 99.37 | 99.37 | 99.29 | 99.29 | 99.5
69 99.03 | 99.03 [99.29 | 99.29 | 99.42 | 99.42 | 99.23 | 99.23 | 99.49
320 340 360 380 400 420 440 460 480 500 520 540 560
Classification Time

98.98 | 98.98 | 9898 | 8952
99.11 [99.11 | 99.11 99.5
99.16 | 99.16 | 99.16 | 99.58
99.25 99.26 99.26 99.64
99.39 | 99.34 | 99.34 | 99.69
99.44 99.44 99.44 99.66
99.47 | 99.47 | 99.47 | 9967
99.49 99.49 99.49 99.68
99.53 99.53 99.53 99.62
99.51 | 99.51 | 99.51 | 99.64
99.47 99.47 99.47 99.7
99.52 | 99.52 | 99.52 | 99.72

99.45 | 9945 | 9945 | 99.71 |
99.51 99.51 99.51 99.69
9952 | 9852 | 9952 | 89.72
99.53 99.53 99.53 99.668
99.51 | 98.51 | 99.51 | 99.69
99.51 99.51 99.51 99.67
99.51 | 99.51 | 99.51 | 99.67
99.5 99.5 995 | 99.65
9955 | 99.55 | 9955 | 99.66
99.51 | 98.51 | 99.51 | 89.65
99.52 [99.52 | 9952 | 99.65
99.47 | 99.47 | 99.47 | 99.59
99.43 99.43 99.43 99.64
99.43 | 99.43 | 9943 | 9964
99.45 99.45 99.45 99.65
99.42 [99.42 | 99.42 | 99.71
99.42 | 99.42 | 9942 | 99.68
99.04 99.39 99.39 99.39 99.7
99.04 99.36 | 99.36 | 99.36 | 99.64
320 340 360 380 400 420 440 460 480 500 520 540 560

Classification Time

Figure 23. Mean classification accuracy for Bayes over 20 iterations. From top to bottom: 6z = 20, 40, 80.

99.5

99

98.5

98

97

96.5

99.5

29

98.5

a8

97.5

a7

96.5

99.5

jeie]

98.5

98

97.5

97

96.5

Page | 17

Mpca

w
=

w

10.14

@

W = N
~

R

~

@ Mmooy

B[
5

320 340 360 380 400 420 440

Mpca

Figure 24. Mean RMSE for Bayes over 20 iterations. Top-left: Jt = 20ms. Top-right: Jt= 40ms. Bottom: ot= 80ms.

[N}

N
oM N W

(=
~

@

R o®

0 0 g 00 P DO B O

)

460 480 500
Time of last Classification

£

%
R RN W
o =M X g2 XX
e
w
&

© ®m N ©

N @

~

D0 PO D)y 0M® MO

N 2o ala o an

o]
4]

©

%]

[SREE

R R

w

N o= s s s s NN
E 0 B B bh OO N

o)

>» N @
O N W= 0N W= 0 NOW =S O NOW =S O N0W = 0N W= ©

© PP ®PEE®E®E0® g ®®E®

>

520 540 560 320 340 360

12.04

12.04

10.97

10.97

10.47

320

10.47

340 360 380

o
olalolall ol
SR AR N © o~

03
6

O N P MmO P PmO® g O mC
piololole =)
O > &P &

=
o w ® [

MR N2 A s ™
- o w

® O EE®®®®
BB

400 420 440 460 480
Time of last Classification

© N @ 0 o0 W00 My X0
oiololplelelealzlel=i
O OO OE®O NN

=]
@ w @ @

© W

NN N D o s g
=

© o ®m e ®® e

8.69
8.77
8.7
8.67
8.65
8.7
8.7
8.66
8.81
8.77
8.75
8.79
8.78
8.76
8.68

400

8.91
8.83
8.76
8.77
8.69
8.77
8.7
8.67
8.65
8.7
8.7
8.66
8.81
8.77
8.75
8.79
8.78
8.76
8.68
8.62

420

N N Y [=S B e) B R o
R85 2383583888 dco8ae &
™D PDDO®PDODMO®OD O DD POO DO P g

9

NN o SN

w o ®L RN

53]

8
8.
8
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.

2
3
4
Ki
3
4
4
4
3!
4
3
3
3
2

(3]

440

© ©
'

N N EERERE
O = W N D o DN @ O W ™

=

N N ©

L O R I R R R N N
[SHN S} ey

W L®mwo

=

NN WM W W A
5]

w

460

RONN
~ @ 0 a &

W AN R R R

N @

oo (9000 g | 00 |gp | P20 00| G000 00 00|00 00) 00| 0 |eg &
FAR LS

480

Time of last Classification

© N @D DM MO Dm®® g 0D
0w o o0 o oo 9o 0= o = ",
O W N W DN, N

o
@ W @ @

N NN g
S o W

02 o ® o ®om oo
©

540

o @
o B

(A
© O

RN NN
© A © R

[
o

W oN
R o

o B 0 B P ODmDOm® 0D
s RN w N

500

8.69
8.63

» o m oo
N W oW

®

520

WL
@ o

S

G
el

SR SRR
[N ERS s

©

@ o o0 0o 00 00 0000 0000 00 0000000 0 g 00 P00
al=lalalz 3

W o= w

540 560

Optimal hyperparameters: for 6t=20, MPCA=65, for 5t=40, MPCA=69 and for 5t=80, MPCA=31. Note that within each heatmap
multiple values of Mpca produce results within 0.1 of the minimum.

Page | 18

Appendix A.8

mean RMSE mean RMSE mean RMSE

mean RMSE

7
6.95
—©—-PCR mean RMSE
6.9 Average trajectory mean RMSE
6.85 a
AN
AN
6.8 <
~
.
6.75 S~
~~al_
6.7 oL
=0
6.65
0 10 20 30 40 50
Principal Components (r)
6.95
6.9
—©—-PCR mean RMSE
6.85 Average trajectory mean RMSE
6.8
c§
6.75 S
N
6.7 ‘o
6.65 S
o
66 R
|
6.55
0 10 20 30 40 50 60
Principal Components (r)
6.9
6.8
— - PCR mean RMSE
Average trajectory mean RMSE
6.7
6.6
S 3
6.5 T =L
o
== __
6.4 —
10 20 30 40 50 60 70 80
Principal Components (r)
6.9
6.8
6.7 -
—-©--PCR mean RMSE
66 Average trajectory mean RMSE
651
6.4 Sel
O-—
6.3 ——o_
T
6.2
0 20 40 60 80 100

Principal Components (r)

std RMSE

std RMSE

std RMSE

std RMSE

0.434
0432f T TmooomEe=m=ss--mmomm---
—— PCR std RMSE
0.43 \- - - -Average trajectory std RMSE
0.428
0.426
0.424
0.422
0.42
0.418
0 10 20 30 40 50
Principal Components (r)
0.45
0.445
—PCR std RMSE
- - - -Average trajectory std RMSE
0.44
0.435
0.43
0.425
0.42
0 10 20 30 40 50 60
Principal Components (r)
0.62
0.61
——PCR std RMSE
06 - - = *Average trajectory std RMSE
0.59
0.58
0.57
0.56
10 20 30 40 50 60 70 80
Principal Components (r)
0.8
0.75
0.7
—PCR std RMSE
065 - - - -Average trajectory std RMSE
0.6
0.55
0.5
0.45
0 20 40 60 80 100

Principal Components (r)

Figure 24. Mean and std RMSE against r principal components and for different sp. From top to bottom: sp = 0.5, 0.6, 0.8, 0.9.

The lowest mean RMSE occurs at the maximum number of principle components in all cases. Thus, when using the whole
dataset to train the algorithm the maximum number of bases should be used (r = 99).

Page | 19

Appendix A.9

19 © PCR mean RMSE
I PCRstdRMSE
4= Average Trajectory mean RMSE %
= = = -Average Trajectory std RMSE
13 — §

% .
E 10 — TI%I
9 I flf{
8 1¥§IEI
EJIIE
L B T T Tt wmﬂﬁ 232 S
LI i e byt g e b o i i ii ——m———————+—

Principal Components (r)

Figure 25 -. Mean and std RMSE with PCR and Average trajectory, against r (20 iterations, sp=0.7) using Feature vector representation f.

The mean RMSE is lowest at r = 10 and increases for larger numbers of principal components. This suggests that the information
in the dataset can be expressed using only few principal components. Note that this behaviour is very different to that observed for
representation f. Additionally, the mean RMSE is higher for all r than the optimal result using f, thus the N-LMS and final algorithm
were based on representation f.

Appendix A.10
Normalised eigenvalues vs information retained (%) for two feature vectors
100 : . : : : : i
90 1
80 1
— —f per angle
U fp g
o —— f per angle
2 60 L =
5
@
2 g5]
c
S
©
40 1
E
2
£ 4 i
20 1
10 1
0
0 10 20 30 40 50 60 70 80 90 100

Eigenvalue index

Figure 26. Normalized eigenvalues of the matrix (X — X) (X — X), with the matrix X as defined in Section X (but with sp=1, i.e. considering the whole dataset),
against percentage of information retained for both feature vector representations, for each of the 8 angles (angles 1 to 8) and 13 distinct timepoints (t=320ms to
560ms in steps of 20ms). This means that there are 104 red and 104 blue lines plotted within the graph (with all red and all blue lines being virtually
indistinguishable from each other)

For representation f: In all cases considered, the first 70 eigenvalues capture more than 99.5% of the information.
For representation f: In all cases considered, more than 97 eigenvalues are required to capture more than 99.5% of the information.
Hence, all principal components are needed to successfully express (X — X)T(X — X).

Page | 20

Appendix A.11

6.92 T T T T T T T

6.91

4
©

Mean RMSE
D
3

6.87

6.86 1 L L 1 1 1 1
0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Learning Rate (1)
Figure 27 — mean RMSE using N-LMS vs learning rate x. Angles were perfectly classified, to eliminate misclassification effects on the RMSE. Using sp=0.7 and
over 20 iterations, the minimum mean RMSE occurred at 4=0.015.

One model was created for each time (320ms to 560ms in steps of 20ms) as well as for each of the 8 angles (total 8 x 13 = 104
models). To generate these models, the nonlinear LMS learning rule was applied (as specified in Section X) where here n represents
the trial index (i.e. the algorithm is being looped through the 70 trials that correspond to each time-angle). The same learning rate
was used for all models, which may potentially be sub-optimal. Hence, the results could be further improved by optimizing a separate
learning rate x for each model.

Appendix A.12

To assess the time necessary for the complete algorithm, the training time using the whole dataset D was recorded over 50 iterations.
(mean = 26.05s, with std = 3.24s). Subsequently, the model produced from training on the whole data was then used to estimate a
set of 800 trajectories. Since all the data available was used for training, the same dataset D had to be used for trajectory decoding.
This means that the RMSE output would not be representative of the performance of the algorithm, however, the time performance
should provide a valid indication of the time per estimate of the algorithm. Dataset D contains 800 trajectories and it was found to
require 122s on average to be decoded fully, using the model trained on the whole of D (50 iterations). Thus, the mean time required
to decode a single trajectory is approximately 0.153s.

The total runtime of the algorithm can be estimated as 26.05 + 0.153 x N seconds, where N is the number of trajectories decoded
(for the validation dataset provided in the competition N = 82 x 8 = 656, and hence the estimated runtime is 126.42s). Note that
runtimes vary with system specifications and as such are only meant as an indicator of time complexity/performance.

Appendix A.13

For cross-validation, the set D was randomly split into Dtrain and Drest using random permutations of the trial indexes. The sizes of
Drrainand Drest Were kept constant (set by the training-to-test ratio sp). It was also ensured that all classes had the same sample size
within each of Dtrain and Drest. This process was performed multiple times/iterations and then the mean and std of the accuracy and
RMSE results produced over all iterations were reported. This method is defined as Monte-Carlo cross-validation and was preferred
over k-fold cross-validation as it explores a larger number of ways of partitioning the data with the drawback of not necessarily
including all datapoints in the testing set at least once (as in k-fold). To mitigate this drawback a significant number of iterations are
necessary (20 iteration were used for optimization tasks, while 50 were used for any evaluations). Clearly, increasing the number of
iterations would yield more accurate results, with the trade-off being computational time.

Page | 21

Appendix B

100
)
>
8}
o
=]
Q
o
@
c
@
g -
—f-tilde-kNN : N
—f-dt=20-kNN
70 - —f-dt=40-kNN -
—f-dt=80-kNN
—— — f-tide-Nearest Centroid
65| —— ~ f-dt=20-Nearest Centroid -
[—— = f-dt=40-Nearest Centroid
— — —f-dt=80-Nearest Centroid
60 | | | | |
50 100 150 200 250
#Nearest Neighbors
Figure 28 — Comparison of feature vector representations for k-NN at t=320ms, sp=0.7 using 20 iterations
S
=
19)
o
3
9]
o
©
c
©
1]
€
f-tilde-kNN
— f-dt=20-kNN
—f-dt=40-kNN
—f-dt=80-kNN
75 ———f-tiide-Nearest Centroid ||
~—— f-dt=20-Nearest Centroid
———-f-dt=40-Nearest Centroid
— — —-f-dt=80-Nearest Centroid
70 | | | | T

50 100 150 200 250
#Nearest Neighbors

Figure 29 - Comparison of feature vector representations for k-NN at t=560ms, s,=0.7 using 20 iterations

Representation £ produces better results than £ in the Nearest Centroid scheme (which outperform the k-NN scheme, see Section
V for details). Hence, representation f was used in all classifiers throughout the report.

Page | 22

Appendix C.1 — Code for Position Estimator Training

function [modelParameters] = positionEstimatorTraining(trainingData)

% - trainingData:

% trainingData (n, k) (n = trial id, k = reaching angle)
% trainingData(n, k) .triallId unique number of the trial

% trainingData (n, k) .spikes (i, t) (i = neuron id, t = time)

% trainingData (n, k) .handPos (d,t) (d = dimension [1-3], t = time)

r=size(trainingData,1l)-1; %Number of Principal Components for PCR

t train = 320:80:560; %times at which angle classification is updated
classificationParameters = struct;

)

[F,1,t]l=organize data(trainingData,80,t train(end)); % create feature vectors for training data

dt=80
for t ind=1:length(t train)
T=t train(t_ind);
X=F (t<=T,) ;
M lda=7;
M pca kNN=170;
M pca SVM=180;
M pca bayes=31;
% DO PCA using max number of bases (N), the fact that we pre-do it
% code faster
[~,mx,Wpca, ~]=eigenmodel (X,size (X,2));
[sb,sw]l=make sb sw(X,1l); %Compute scatter matrices
M_pca=M_pca_kNN;
% PCA-LDA for the optimal Mpca for kNN, Mlda=7
Wopt=make Wopt (Wpca,M pca,M lda,sb,sw);
W=Wopt'* (X-mx) ;
Wmean=zeros ([size (W,1) 81);
for k=1:8
Wmean (:, k)=mean (W(:, 1==k),2);
end
%$save model parameters
classificationParameters(t_ind) .Wopt kNN=Wopt;
classificationParameters (t_ind) .mx_ kNN=mx;
classificationParameters (t_ind) .Wmean kNN=Wmean;

% PCA-LDA for the optimal Mpca for SVM, Mlda=7
M pca=M pca SVM;
Wopt=make Wopt (Wpca,M pca,M lda,sb,sw);
W=Wopt'* (X-mx) ;
Wmean=zeros ([size (W,1) 8]);
for k=1:8

Wmean (:, k) =mean (W (:, 1==k),2) ;
end
%$save model parameters
classificationParameters(t ind) .Wopt SVM=Wopt;
classificationParameters (t ind) .mx SVM=mx;
classificationParameters(t ind) .Wmean SVM=Wmean;

$PCA-LDA for optimal Mpca for bayes, Mlda=7
M pca=M pca bayes;
Wopt=make Wopt (Wpca,M pca,M lda, sb,sw);
W=Wopt'* (X-mx) ;
$find the cov-mtrix and mean of the gaussian fitted in data
A tot=[];
C 1 tot=[1];
m tot=[];
for k=1:8
[A,C 1,m]=get gauss params (W(:,1==k));
A tot=cat(3,A tot,A);
C 1 tot=cat(3,C 1 tot,C 1);
m_tot=cat (3,m_tot,m);
end
%save model parameters
classificationParameters(t _ind) .A bayes=A tot;
classificationParameters(t _ind) .C bayes=C 1 tot;
classificationParameters (t_ind).m bayes=m tot;

makes the

Page | 23

classificationParameters(t ind) .Wopt bayes=Wopt;

classificationParameters(t ind) .mx bayes=mx;

classificationParameters (t ind) .Wmean bayes=Wmean;
end

%create feature vectors for training data (dt=20)
T end = 560;

dt=20;

T = (320:dt:T _end);

[feat, 1, t]=organize data(trainingData,dt,T end);
%get hand positions from data
[~,~,%x,¥,~,~]=get_all handPos(trainingData) ;
$sample at the values of time we care about

x resampled = x(:,T,:);

y _resampled = y(:,T,:);

$create a regression model for each angle at each time
$Computing PCR

angle =1:8;
coeffs gc = struct;
for angle index =l:length(angle)
handPos_x for regression = x resampled(:,:,angle index);
handPos y for regression = y resampled(:,:,angle index);
for time index = 1:length(T)
features_temp = feat(t<:T(time_index),l::angle_index);
coeffs gc(time index, angle index).mean hand pos x =
mean (handPos x for regression(:,time index));
coeffs gc(time index, angle index).mean hand pos y =
mean (handPos y for regression(:,time index));

hand pos temp x = handPos x for regression(:,time index)-coeffs gc(time index,

angle index) .mean hand pos x;

hand pos temp y = handPos y for regression(:,time index)-coeffs gc(time index,

angle index) .mean hand pos y;

[~,mx,U, ~]=eigenmodel (features_ temp,r);

W=U'* (features temp-mx) ;

coeffs gc(time index, angle index) .mean feature=mx;
bx=U* (W*W') ~ (=1) *W* hand_pos_temp_x;

by=U* (W*W'"') ~ (-1) *W* hand pos temp y;

coeffs gc(time index, angle index) .values = [bx , by]l;
end
end
average traj = calculate avg traj(trainingData);

modelParameters.trajectory = average traj;
modelParameters.classificationParameters = classificationParameters;
modelParameters.coeffs gc = coeffs gc;

modelParameters.r=r;

modelParameters.M lda=M lda;

modelParameters.M pca kNN=M pca kNN;
modelParameters.M pca SVM=M pca SVM;
modelParameters.M pca bayes=M pca bayes;

end

)

5 this function calculates the average trajectory

function average traj = calculate avg traj (trainingData)
classes = length(trainingData(l,:));

max len spikes = 0; % initialise the longest trial to O
for ¢ = l:classes

for i=l:length (trainingData(:,1))
% extract the length of the spike trains for each trial
len spikes = length(trainingData(i,c).spikes(1l,:));
check if this length of the spike is the largest
if len spikes > max len spikes
max len spikes = len spikes;

)

end
end
end

o)

% make sure all lengths of the trajectories are the same, otherwise we

cannot

Page | 24

% compute the average (number of data points must be the same across
% trajectories of the same class)
for c=l:classes
for i=l:length (trainingData(:,1))
for j=length(trainingData(i,c) .spikes(l,:))+1l:max len spikes
pad shorter handPos with the last value until
max len spikes. do not pad with zeros as you would compute the
wrong avg, do not cut to shortest trajectory as you would lose
information
trainingData (i, c) .handPos = [trainingData (i,c).handPos trainingData(i,c) .handPos(:,

o° o° o°

o

end)];
end
end
end

)

% compute the average trajectory

average traj(classes).handPos = [];
for c=l:classes
trajectories = zeros(2,max len spikes); % two rows, x and y pos

for i=l:length (trainingData(:,1))
for j=1l:length (trainingData (i, c).handPos (1, :))

[)

% insert x and y handPos in the trajectory arrays

trajectories(:,j) = trajectories(:,3j) + trainingData(i,c).handPos(1:2,7);
end
end
% compute the average trajectory for each class
average traj(c).handPos = trajectories(:,:)/length(trainingData(:,1));
end
end

%$this function extracts PCA model parameters
function [N,mx,U,L]=eigenmodel (x,p)
N=size (x,2);

mx=mean (x,2) ;

A=x-mx;

S=A'*A/N;

[U,L]l=eig(8);

p=min (p,size (U, 2));
[~,ind]=maxk (diag (L) ,p) ;
U=A*U(:,1ind) ;

U=U./sqgrt (sum(U."2)) ;

L=L(ind, ind) ;

end

%this function makes the within-class/between class scatter matrices
function [sb,sw]=make sb sw(X,1)
c=unique(l);
mc=zeros (size (X, 1), length(c));
mx=mean (X, 2) ;
for im id=1l:length(c)

mc(:,im id)=mean (X (:,1l==c(im _id)),2);
end
sb= (mc-mx) * (mc-mx) ';
st=(X-mx) * (X-mx) ';
sw=st-sb;
end

$create optimal PCA-LDA matrix

function [Wopt]=make Wopt (Wpca,M pca,M lda,sb, sw)

[Wlda,L] = eig((Wpca(:,1:M pca) '*sw*Wpca(:,1:M pca))”*-1*Wpca(:,1:M pca) '*sb*Wpca(:,1:M pca));
[~,ind]=maxk (diag (L) ,M 1lda);

Wopt=Wpca (:,1:M pca) *Wlda(:,1ind);

end

%get scaling factor, covariance and mean for Bayesian
function [A,C 1,m]=get gauss params (X)

C=cov (X");

[~,S,~] = svd(C);

temp=S (S~=0) ;

a=10" (-sum(loglO0 (temp)) /length (temp)) ;

C l=a*(a*C)"-1;
A=-(size(C,1)/2)*log(2*pi/a)-0.5*1log(det (a*C)) ;
m=mean (X, 2) ;

Page | 25

end

$create feature vectors (f)

function [X,1,t]=organize data(data,dt,T end)
T=dt:dt:T end;

X0=zeros ([98,size(data,l),size(data,2),length(T)]);

for ind=1:length (T)
tl=dt* (ind-1)+1;
t2=dt*ind;
for k=1l:size(data,?2)
for n=l:size(data,l)
for i=1:98
X0 (i,n,k,ind)=sum(data(n, k) .spikes(i,tl:t2))/dt;
end
end
end
end
Xl=zeros ([size (X0,1)*floor (T (end)/dt) size(X0,2) size(X0,3)]1);
t=zeros ([l size(X0,1)*floor (T (end)/dt)]):;
for ind=1:floor (T (end) /dt)

X1 (((ind-1)*98+1) : ((ind-1+1)*98),:,:)=X0(:,:, :,1ind);
t(l, ((ind-1)*98+1) : ((ind-1+1)*98))=T (ind) ;
end
X=zeros ([size (X1,1) size(X1l,2)*size(data,2)]);
l=zeros ([l size (X1l,2)*size(data,2)]);
for k=l:size(data, 2)
X(:, (k=1)*size(X1l,2)+(l:size(X1,2)))=X1(:,:,Kk);
1(:, (k-1)*size(X1,2)+(l:size(X1,2)))=k;
end
end

%$Extracting hand positions
function[mx,my,x,y,1l,in datal=get all handPos (data)

%mx, my = average trajectory
$x,y — row is trials, column is time, 3rd dimension is angle
%1 (matrix) - row is length of trial, column is corresponding angle

x mat=[];
y_mat=[];
for k=1:8
for n=1l:size(data,l)
x=data (n, k) .handPos (1, :) ;
1(n,k)=length(x);
while length (x)>size(x mat,2) && size(x mat,1)>0
x mat=[x mat x mat(:,end)];
end
while size(x mat,2)>length(x) && size(x mat,1)>0
x=[x x(end)];
end
x_mat=[x_mat;x];
y=data (n, k) .handPos (2, :) ;
while length(y)>size(y mat,2) && size(y mat,1)>0
y mat=[y mat y mat(:,end)];
end
while size(y mat,2)>length(y) && size(y mat,1)>0
y=[y y(end)];

end
y_mat=[y mat;y];
end
end
x mean=[];
y mean=[];

x=zeros ([size(x mat,1l)/8 size(x _mat,2) 8]);

y=zeros ([size(y mat,1)/8 size(y mat,2) 8]);

for k=1:8
x(:,:,k)=x mat (((k-1)*n+1) :
y(:,:,k)=y mat (((k-1)*n+1):
X mean=[x mean;mean (x mat ((
y mean=[y mean;mean (y mat ((

k*n),:);
k*n),:);
k=1)*n+1) : (k*n),:))1;
k=1)*n+1) : (k*n),:))1;

end
mx=zeros ([1 size(x mean,2) size(x mean,1)]
my=zeros ([l size(y mean,2) size(y mean,1)]

)i
) ;

’

Page | 26

for k=1:8
mx (1,:,k)=x mean(k,:);
my (1, :,k)=y mean(k, :);

end

in data=zeros(size(x));

for k=1:8
for n=l:size(in data,l)

in data(n,1:1(n,k),k)=ones(1l,1(n,k));

end

end

end

Page | 27

Appendix C.2 — Code for Position Estimator

function [x, y, newModelParameters] = positionEstimator (testData, modelParameters)
- test data:
test data(m) .trialID
unique trial ID
test data(m).startHandPos
2x1 vector giving the [x y] position of the hand at the start
of the trial
test data(m) .decodedHandPos
[2xN] vector giving the hand position estimated by your
algorithm during the previous iterations. In this case, N is
the number of times your function has been called previously on
the same data sequence.
test data(m) .spikes(i,t) (m = trial id, i = neuron id, t = time)
in this case, t goes from 1 to the current time in steps of 20

o o Ad° o° O° o A° o° o° o° A o°

o©

$Saving length of input spike trains
T end = length(testData.spikes);

% Parameters for SVM
s2=0.07;

c=1;

$Extracting model parameters for classification
classificationParameters=modelParameters.classificationParameters;
if T end==320 || T end==400 || T end==480 || T end==560
t ind=T end/80-3;
Xt=organize data testing(testData,80,T end);
$project features into optimal plane for kNN
Wopt=classificationParameters (t ind) .Wopt kNN;
mx=classificationParameters(t ind) .mx KkNN;
Wmean=classificationParameters (t_ind) .Wmean kNN;
Wt=Wopt'* (Xt-mx) ;
pred kNN=do kNN fast (2,Wt,Wmean,1:8,1);
$project features into optimal plane for SVM
Wopt=classificationParameters (t_ind) .Wopt SVM;
mx=classificationParameters (t ind) .mx SVM;
Wmean=classificationParameters (t_ind) .Wmean SVM;
Wt=Wopt'* (Xt-mx) ;
pred SVM=do SVM (Wt,Wmean,s2,c);
$project features into optimal plane for Bayes
Wopt=classificationParameters(t ind) .Wopt bayes;
mx=classificationParameters(t ind) .mx bayes;
Wt=Wopt'* (Xt-mx) ;
p=I[1;
m tot=classificationParameters(t ind) .m bayes;
A tot=classificationParameters(t ind).A bayes;
C 1 tot=classificationParameters(t ind) .C bayes;
$determine p(features|class) from parameters in training dat
for k=1:8
m=m_tot(:,:,k);
C 1=C 1 tot(:,:,k);
A=A tot(:,:,k);
Y=Wt-m;
templ=diag(Y'*C 1*Y);
pl=exp (A-0.5*templ) ;
p=I[p;pl'l;
end
[~,pred bayes]=max(p);
% do majority voting
[pred angle, freg]=mode ([pred kNN;pred SVM;pred bayes]);
% 1f all frequencies are 1, pick SVM
pred angle (fregq==1)=pred SVM(freg==1);
else
%1f T end is not time for update, keep previous label
pred angle=modelParameters.test label;
end

%$Regresion (PCR) to estimate hand position

Page | 28

dt = 20;

T = (320:dt:560);

[features test]=organize data testing(testData,dt,min(T_end,T(end)));

coeffs gc = modelParameters.coeffs gc;

coeff x = coeffs gc(length(features test)/98 - 15, pred angle) .values(:,1);

coeff y = coeffs_gc(length(features_test)/98 - 15, pred angle) .values(:,2);

mx = coeffs gc(length(features test)/98 - 15, pred angle).mean feature;

mean hand pos _x = coeffs gc(length(features test)/98 - 15, pred angle).mean hand pos_x;
mean_hand pos y = coeffs gc(length(features test)/98 - 15, pred angle).mean hand pos_ y;

(features test-mx) '*coeff x+mean hand pos x;
= (features_test-mx) '*coeff y+mean hand pos_y;
Note that by construction of the feature vector, if length>560, the result
$will stay at the value it had at 560.
modelParameters.test label = pred angle;
newModelParameters = modelParameters;
end

o0 kX

$kNN algorithm
function [labels,err] = do kNN fast (ord,test feat,train feat mat,train lab,NN vec)
labels=zeros (length (NN vec),size(test feat,2));
err=zeros (length (NN _vec),size(test feat,2));
for n=l:size(test feat,2)
test feat vec=test feat(:,n);
if ord==
aa=sqrt (sum(test feat vec.”2));%scalar
ab=sqrt (sum(train feat mat.”2));%row vector
[erl,indl]=maxk (test feat vec'*train feat mat./(aa*ab),max (NN_vec)) ;
else
[erl,indl]=mink (sum((abs (test feat vec-train feat mat)) .”ord),max (NN vec));
end
for ind NN=1:length (NN _vec)
NN=NN_vec (ind NN) ;
ind=indl (1:NN) ;
er=erl (1:NN) ;
train labl=train lab(ind);
[~,~,temp]=mode (train labl);
er=er (ismember (train labl, temp{1l}"'));
train labl=train labl (ismember (train labl,temp{1}'));
[temper, temp]=min (er) ;
labels (ind NN, n)=train labl (temp) ;
err (ind NN, n)=temper;
end
end
end

$SVM implemented using decision tree
function pred = do SVM(Xt,Xmean,s2,c)

modell = svmTrain (Xmean', [0 0 1 1 1 1 0 0]', c, @(xl, x2) gaussianKernel (xl, x2, s2));
model2 = svmTrain (Xmean(:,3:6)', [1 1 0 0]', c, @(x1, x2) gaussianKernel (x1, x2, s2));
model3 = svmTrain (Xmean(:,[1 2 7 8])', [1 1 0 0]', ¢, @(x1l, x2) gaussianKernel (x1, x2,

pred=zeros (1l,size (Xt,2));
for n=l:size (Xt,2)
pl=svmPredict (modell,Xt (:,n)");

if pl==1 %3-6
p2=svmPredict (model2,Xt (:,n)");
if p2==1 %$3-4
pred(n)=do kNN fast (2,Xt(:,n),Xmean(:,3:4),3:4,1);
else
pred(n)=do kNN fast (2,Xt(:,n),Xmean(:,5:6),5:6,1);
end

else 1 2 7 8
p2=svmPredict (model3,Xt (:,n)");

if p2==1 %1-2
pred(n)=do kNN fast (2,Xt(:,n),Xmean(:,1:2),1:2,1);
else
pred(n)=do kNN fast(2,Xt(:,n),Xmean(:,7:8),7:8,1);
end
end
end
end

Screate feature vector (f)

s2));

Page | 29

function [X]=organize data testing(data,dt,T end)
T=dt:dt:T end;
X=zeros ([98*length(T),1]);
for ind=1:length (T)
tl=dt* (ind-1)+1;
t2=dt*ind;
for i=1:98
X (i+(ind-1)*98,1)=sum(data.spikes (i, tl:t2))/dt;
end
end
end

%$SVM train, from lectures (From Problem Sheet)
function [model] = svmTrain(X, Y, C, kernelFunction,

tol, max passes)
$SVMTRAIN Trains an SVM classifier using a simplified version of the SMO
$algorithm.
[model] = SVMTRAIN (X, Y, C, kernelFunction, tol, max passes) trains an
SVM classifier and returns trained model. X is the matrix of training
examples. FEach row is a training example, and the jth column holds the
jth feature. Y is a column matrix containing 1 for positive examples
and 0 for negative examples. C is the standard SVM regularization
parameter. tol is a tolerance value used for determining equality of
floating point numbers. max passes controls the number of iterations
over the dataset (without changes to alpha) before the algorithm quits.

o 0 o° o° o o° o° o° o°

oe

Note: This is a simplified version of the SMO algorithm for training
SVMs. In practice, if you want to train an SVM classifier, we
recommend using an optimized package such as:

o o° oo

oe

LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
SVMLight (http://svmlight.joachims.org/)

o° oo

o\

if ~exist('tol', 'var') || isempty(tol)
tol = le-3;

end

if ~exist('max passes', 'var') || isempty(max passes)
max passes = 5;

end

o

Data parameters
= size (X, 1);
= size (X, 2);

S5 3

o\

Map 0 to -1
Y (Y==0) = -1;

% Variables

alphas = zeros(m, 1);
b = 0;

E = zeros(m, 1);
passes = 0;

eta = 0;

L = 0;

H=0;

oe

Pre-compute the Kernel Matrix since our dataset is small
(in practice, optimized SVM packages that handle large datasets
gracefully will not do this)

o o° oo

o

We have implemented optimized vectorized version of the Kernels here so
that the svm training will run faster.
if strcmp (func2str (kernelFunction), 'linearKernel')
% Vectorized computation for the Linear Kernel
% This is equivalent to computing the kernel on every pair of examples
K = X*X';
elseif contains (func2str (kernelFunction), 'gaussianKernel')
% Vectorized RBF Kernel
% This is equivalent to computing the kernel on every pair of examples
X2 = sum(X."2, 2);

o\

Page | 30

~
|

= bsxfun (@plus, X2, bsxfun(@plus, X2', - 2 * (X * X")));
kernelFunction (1, 0) .” K;

~
Il

else

oe

Pre-compute the Kernel Matrix
The following can be slow due to the lack of vectorization

o\

K = zeros(m);
for i = 1:m
for j = imm
K(i,j) = kernelFunction(X(i,:)"', X(3j,:)");
K(j,1i) = K(i,]J); %the matrix is symmetric
end
end
end
% Train
% fprintf ('\nTraining ...');
dots = 12;

while passes < max passes

num_changed alphas = 0;
for i = 1:m
% Calculate Ei = f(x(1)) - y(i) using (2).
$ E(i) = b + sum (X(i, :) * (repmat(alphas.*Y,1l,n).*X)") - Y(i);
E(i) = b + sum (alphas.*Y.*K(:,1)) - Y(i);
if ((Y(1)*E(i) < -tol && alphas(i) < C) || (Y(i)*E(i) > tol && alphas(i) > 0))

oe

In practice, there are many heuristics one can use to select
the i and j. In this simplified code, we select them randomly.

o\

j = ceil(m * rand());
while j == 1 &% Make sure i \neqg j
j = ceil(m * rand());
end
% Calculate Ej = £(x(j)) - v(3j) using (2).
E(jJ) = b + sum (alphas.*Y.*K(:,3)) - Y(3):

[

% Save old alphas
alpha i old = alphas(i);
alpha j old = alphas(3j);

% Compute L and H by (10) or (11).

if (Y (1) == Y(3))
L = max (0, alphas(j) + alphas(i) - C);
H = min(C, alphas(j) + alphas(i));

else

L = max (0, alphas(j) - alphas(i));

H = min(C, C + alphas(j) - alphas(i));
end
if (L == H)

o)

% continue to next 1i.
continue;
end
% Compute eta by (14).
eta = 2 * K(i,3) - K(i,i) - K(3,3);
if (eta >= 0)
% continue to next i.
continue;
end

)

% Compute and clip new value for alpha j using (12) and (15).

alphas(j) = alphas(j) - (Y(3) * (E(i) - E(3))) / eta;
% Clip

alphas(j) = min (H, alphas(j));

alphas(j) = max (L, alphas(j));

% Check if change in alpha is significant
if (abs(alphas(j) - alpha j old) < tol)

)

% continue to next 1i.

Page | 31

o)

% replace anyway
alphas(j) = alpha j old;
continue;

end

% Determine value for alpha i using (16).
alphas (i) = alphas (i) + Y (i)*Y(j)* (alpha j old - alphas(Jj)):

% Compute bl and b2 using (17) and (18) respectively.
bl = b - E(1)

- Y(i) * (alphas(i) - alpha i old) * K(i,3)"
- Y(j) * (alphas(j) - alpha j old) * K(i,3J)";
b2 =b - E(J) ...
- Y(i) * (alphas(i) - alpha i old) * K(i,3)"'
*

- Y(3) (alphas(j) - alpha_j_old) * K(j,J)';

% Compute b by (19).
if (0 < alphas (i) && alphas (i) < C)

b = bl;

elseif (0 < alphas(j) && alphas(j) < C)
b = b2;

else
b = (bl+b2)/2;

end

num changed alphas = num changed alphas + 1;
end
end

if (num changed alphas == 0)
passes = passes + 1;
else
passes = 0;
end

% fprintf('.");
dots = dots + 1;
if dots > 78
dots = 0;
fprintf ("\n');
end
if exist ('OCTAVE VERSION')
fflush (stdout) ;
end
end
% fprintf (' Done! \n\n');
% Save the model
idx = alphas > 0;
model .X= X (idx, :);
model.y= Y (idx) ;

model.kernelFunction = kernelFunction;
model .b= b;

model.alphas= alphas (idx) ;

model.w = ((alphas.*Y)'*X)"';

end

%gaussian kernel, from lectures (From Problem Sheet)

function sim = gaussianKernel (x1, x2, sigma)

$RBFKERNEL returns a radial basis function kernel between x1 and x2

% sim = gaussianKernel (x1, x2) returns a gaussian kernel between x1 and x2
and returns the value in sim

o

% Ensure that x1 and x2 are column vectors
x1l = x1(:); x2 = x2(:);

sim = exp (- (norm(x1l - x2) ~ 2) / (2 * (sigma ~ 2)));
end

$SVM predict, from lectures (From Problem Sheet)
Page | 32

function pred = svmPredict (model, X)

$SVMPREDICT returns a vector of predictions using a trained SVM model

% (svmTrain) .

pred = SVMPREDICT (model, X) returns a vector of predictions using a
trained SVM model (svmTrain). X is a mxn matrix where there each
example is a row. model is a svm model returned from svmTrain.
predictions pred is a m x 1 column of predictions of {0, 1} values.

o o oo o°

oe

oe

Check if we are getting a column vector, if so, then assume that we only
need to do prediction for a single example
if (size(X, 2) == 1)
% Examples should be in rows
X = X';
end

o\

% Dataset

m = size (X, 1);

p = zeros(m, 1);
pred = zeros(m, 1);

if strcmp (func2str (model.kernelFunction), 'linearKernel')
We can use the weights and bias directly if working with the
% linear kernel

oe

o) X * model.w + model.b;
elseif contains (func2str (model.kernelFunction), 'gaussianKernel')
% Vectorized RBF Kernel
% This is equivalent to computing the kernel on every pair of examples

X1 = sum(X."2, 2);

X2 = sum(model.X.”2, 2)"';

= bsxfun (@plus, X1, bsxfun(@plus, X2, - 2 * X * model.X'));
= model.kernelFunction (1, 0) .” K;

bsxfun (Q@times, model.y', K);

bsxfun (@times, model.alphas', K);

= sum(K, 2);

T "R EAXN
Il

else
% Other Non-linear kernel
for i = 1:m
prediction = 0;
for j = l:size(model.X, 1)
prediction = prediction + ...
model.alphas(j) * model.y(j) * ...
model.kernelFunction (X (i,:)', model.X(j,:)");
end
p(i) = prediction + model.b;
end
end

% Convert predictions into 0 / 1
pred(p >= 0) = 1;
pred(p < 0) 0;

end

Page | 33

