
Page | 1

BMI coursework

Team Error404: Georgios Gryparis, Agnese Grison,

Charalambos Hadjipanayi, Edoardo Occhipinti

Dept. of Bioengineering, Imperial College London

Abstract — In this report the neural spikes of a monkey reaching 8

different target directions were decoded to predict the x and y

hand positions of the movements. Three different classifiers were

implemented: k-Nearest Neighbors (k-NN), Support Vector

Machine (SVM) and Bayesian. Majority voting was used to select

the most likely direction, obtaining a final angle classification

accuracy of 99.75%. Principal Component Regression (PCR) was

used to estimate the x and y hand positions as a function of time

obtaining a Root Mean Square Error (RMSE) of 𝟕. 𝟑𝟕 ±
𝟎. 𝟔𝟕 with the optimal number of principal components.

I. DATA & CROSS VALIDATION

The data (D) used to develop our algorithm consists of 800

experiments. Each experiment n contains a trajectory of 2D

hand motion (H = [HX, HY]), along with the neural activity from

98 neural units (S) sampled at 1ms intervals. Experiments can

be distinguished into 8 distinct classes (C) representing the

reaching angle of the trajectory. In D, there are 100 experiments

for each class 𝐶𝑘 ∈ 𝑪. In order to draw meaningful relations

between S and H, the neural data must be reduced to a feature

vector. Two feature representations were investigated, both

based on firing rates. The first representation (𝒇̃ (τ)) was

constructed by computing the average firing rate of each of the

98 neural units from the beginning of the experiment (time t=0)

until the time of interest (time t = τ). The second, higher

dimensional representation (𝒇(𝜏)) was constructed by

extracting the 98 spike trains from time t = 0 to t = τ, then

splitting each into bins of size δt, computing the within-bin

firing rates and concatenating the results into a single vector.

The feature extraction process is illustrated in Figure 1.

Figure 1 - Feature extraction process for both representations. Floor operator

is denoted by ⌊⋅⌋. Analytical expressions are described in Appendix A.1.

Preliminary results showed that representation f outperforms 𝒇̃

in both classification accuracy (Appendix B) and RMSE of the

predicted trajectories (Appendix A.9). Thus, representation f is

used for the rest of this report, unless otherwise specified.

As the position estimation was performed at times that are

multiples of 20ms, bin size δt=20ms was used for trajectory

regression. For classification, bin sizes of δt=20ms, 40ms and

80ms were used. Note that updating the classification can only

be performed at times that are multiples of δt and that feature

vector size decreases with larger δt and increases with larger τ.

The dataset (D) was split, creating a training set (Dtrain) and a

testing set (Dtest). These were generated randomly for a given

ratio 𝑠𝑝 = 𝑁𝑡𝑟𝑎𝑖𝑛/(𝑁𝑡𝑒𝑠𝑡+𝑁𝑡𝑟𝑎𝑖𝑛) , while ensuring that the size of

each class within each set (NC,train and NC,test) was constant, to

allow for cross-validation (performed using the Monte-Carlo

method, see Appendix A.13). Final evaluation of the algorithm

was performed using an 82-trial dataset provided by Dr Clopath.

II. TUNING CURVES & POPULATION DECODING

Neurons broadly encode movement direction and orientation.

Tuning curves that plot firing rate vs direction angle for the

training data can be used to determine each neuron’s

preferential direction. The direction of movement can then be

theoretically inferred by the preferred directions of neurons,

weighted by their respective firing rates [1]:

(
cos (𝜃)

sin (𝜃)
) = ∑

𝑟 − 𝑟0

𝑟𝑀𝐴𝑋
(

cos (𝑝𝑖)

sin (𝑝𝑖)
)

𝑖

where θ is the predicted direction and pi is the preferred

direction for the ith neuron (direction at which its tuning curve

peaks). r is the current firing rate, r0 is the baseline firing rate

(tuning curve minimum) and rMAX is the peak firing rate.

To optimize population decoding, the neurons that best

represent each preferred direction had to be determined. This

was achieved by inspecting the normalized and unnormalized

tuning curves and quantifying the noise and the strength of the

preferred direction. Population decoding was performed at

t=320ms to 560ms, which represents the full range of possible

classification times since the shortest trajectory in the dataset is

571ms. For sp=0.7, over 20 iterations, mean angle classification

accuracy peaked at t=480ms and was 49.25% (Appendix A.2).

III. AVERAGE TRAJECTORY

A naïve method of approximating the hand position Htest(t) is to

estimate that it is equal to the average hand position at time t of

all experiments that belong to the same class. The mean

trajectory of class Ck, 𝑯̅𝐶𝑘(𝑡), can be estimated by:

𝑯̅𝐶𝑘(𝑡) ≈ 𝑯̅𝒕𝒓𝒂𝒊𝒏
𝐶𝑘 (𝑡) = (1/𝑁𝐶,𝑡𝑟𝑎𝑖𝑛) ∑ 𝑯𝒕𝒓𝒂𝒊𝒏

𝑛 (𝑡)
𝑛∈𝐶𝑘

where n denotes the experiment index. In order to compute the

average, it was necessary that all trajectories covered the same

length of time. Therefore, the longest trajectory was found for

each angle and the shortest trajectories were padded with the

last x and y hand position values. This method, instead of zero

padding the shorter trajectories, ensured that the average

trajectory did not suffer from erroneous average values or a

reduction in data length. This estimation technique was used to

benchmark the different classifiers. Note that given perfect

classification, this method gives an RMSE of 6.96 with standard

deviation 0.56 over 100 iterations for sp = 0.7.

IV. PCA-LDA & DATA VISUALIZATION

Figure 2 – Features with δt=80ms, at t=320ms, using PCA-LDA (MPCA=170,

MLDA=2). Contours of fitted Gaussian distributions included for illustration.

Using Linear Discriminant Analysis (LDA) and Principal

Component Analysis (PCA), separation between classes can be

maximised. LDA is a tool used to transform data, by rotating

the feature space, to find the optimal direction with respect to

class separation. To improve LDA performance, PCA was first

used to reduce the dimensionality of the feature space. To

visualize the data, the feature vectors were projected onto a 2D

subspace (Figure 2). On each cluster a bivariate Gaussian

distribution was fitted using its mean and covariance matrix.

Page | 2

V. K-NN CLASSIFIER

To predict the direction of movement, a simple k-NN algorithm

was employed. At time t, for each feature vector 𝒇𝒕𝒆𝒔𝒕(𝑡) in Dtest,

the k nearest neighbours were determined from the feature

vectors 𝒇𝒕𝒓𝒂𝒊𝒏(𝑡) in Dtrain using Euclidean distance. Then, the

predicted direction was the majority vote of the labels of the

neighbours. Alternatively, the centroid of each class within the

training set 𝒇̅𝒕𝒓𝒂𝒊𝒏
 𝐶𝑘 (𝑡) = (1/𝑁𝐶,𝑡𝑟𝑎𝑖𝑛) ∑ 𝒇𝒕𝒓𝒂𝒊𝒏

 𝑛 (𝑡)𝑛∈𝐶𝑘 can be

calculated and each testing feature vector assigned with the

label of its nearest centroid. The second method produced

improved results, both in terms of accuracy, as it removes noise,

and classification time (Figure 3) since it requires a smaller

number of comparisons to make a prediction.

Figure 3- Accuracy vs # Nearest Neighbors (t=320ms, sP=0.7, 20 iterations).

Location of peak is related to Ntrain (for sP=0.7, Ntrain=560)

The nearest centroid classifier was optimised by finding a

transformation that maximally separates classes in Dtrain:

𝝓𝒕𝒓𝒂𝒊𝒏(𝑡) = 𝑾(𝒇𝒕𝒓𝒂𝒊𝒏(𝑡) − (1/𝑁𝑡𝑟𝑎𝑖𝑛) ∑ 𝒇𝒕𝒓𝒂𝒊𝒏
𝑛 (𝑡)𝑛∈𝑫𝒕𝒓𝒂𝒊𝒏

)

Then, the centroids 𝝓̅𝒕𝒓𝒂𝒊𝒏
𝐶𝑘 (𝑡) = (1/𝑁𝐶,𝑡𝑟𝑎𝑖𝑛) ∑ 𝝓𝒕𝒓𝒂𝒊𝒏𝜹𝒕

𝒏 (𝑡)𝑛∈𝐶 can

be found and the testing feature vectors transformed 𝒇𝒕𝒆𝒔𝒕(𝑡) →

𝝓𝒕𝒆𝒔𝒕(𝑡) so that each testing feature vector can be assigned with

the label of its nearest centroid in the transformed feature space.

To find W, PCA-LDA was used with a fixed number of LDA

bases (MLDA=7) and a varying number of PCA bases (optimal

MPCA was deduced empirically). Details on PCA-LDA can be

found in Appendix A.3.

The MPCA hyperparameter was optimized with respect to

minimizing the RMSE produced by using the average

trajectory. This metric was chosen since raw accuracy numbers

were insufficient to determine the optimal classification method

(trajectory estimation error is also dependent on the time of

correct classification). A large range of MPCA produced mean

RMSE results within 0.1 of the local minimum for sP=0.7, using

20 iterations (Appendix A.4). The results for MPCA that

minimize RMSE using different δt are tabulated below.

Figure 4 –Accuracy (%) and RMSE (Average Trajectory) using Nearest

Centroid. A: 𝛿𝑡=20, no PCA-LDA. B: 𝛿𝑡=20, MPCA = 35. C: 𝛿𝑡=40, no

PCA-LDA. D: 𝛿𝑡=40, MPCA=260. E: 𝛿𝑡=80, no PCA-LDA. F: 𝛿𝑡=80,

MPCA = 170. (MLDA=7 in all cases).

The best result (RMSE using average trajectory: mean = 7.96,

std = 0.79; over 50 iterations) occurs when MPCA=170 and the

label is updated at t=320, 400, 480 and 560ms (δt=80ms).

Further improvements on this classification method would

involve using other distance metrics (Manhattan Distance,

cosine distance, Earth mover distance), and varying MLDA.

VI. SUPPORT VECTOR MACHINE CLASSIFIER

The SVM method aims at finding a hyperplane in the feature

space which allows for maximum linear separation of two

classes of data, thus creating an optimal linear decision

boundary for binary classification.

Multiclass classification was performed using a decision tree

composed of three layers, as illustrated in Figure 5. In the first

layer (Classifier 1), the input angle was classified as “right”

(310° to 70°) versus “left” (110° to 230°). Separating the angles

in Classifier 1 between “left” and “right” was informed by

Figure 2. In the second layer, the angle was classified into

further sub classes (groups of two angles) using Classifiers 2a

and 2b. Finally, the input was assigned a specific predicted

angle using the nearest centroid method described in Section V,

only differing in that the only two centroids used were the ones

corresponding to the two possible binary classification options.

Figure 5 - SVM decision tree

SVM was implemented using a baseline code provided by Dr.

Clopath. To minimize the risk of overfitting due to outliers

while ensuring margin was as wide as possible, a soft margin

rule was implemented to relax the SVM optimization. A factor

c was incorporated to represent the degree of misclassification

allowed. This had the added benefit of increasing the method’s

generalization capability. Initially, the Linear Kernel method

was used. Despite the fast computation of the Linear classifier,

classification performance was not satisfactory (less than 90%

mean classification accuracy at t=320ms, for sP=0.7, details in

Appendix A.5). For this reason, a non-linear kernel was used,

specifically the Gaussian kernel, which allows for non-linear

mapping of data into higher dimensional space, where it is more

likely to be linearly separable. This non-linear approach is

theoretically expected to be at least as good as the linear kernel

[2]. A parameter representing the spread of the Gaussian (σ) was

used to control over- and under-fitting of the training set (lower

σ results in tighter decision boundary).

Preliminary results (Appendix A.5) showed that, as in the case

of k-NN, using only the mean feature vector of each class to

train the nonlinear SVM resulted in significant improvement in

classification accuracy (as compared to training on all feature

vectors). Thus, the SVM training input was reduced to an 8-

column matrix, which also reduced computation time. When the

mean feature vectors were used, in the final layer there were

only two training data points. Hence, k-NN and SVM decision

boundaries were equivalent, but k-NN was faster. This method

based on the Gaussian kernel produced superior results than the

linear kernel as seen in Appendix A.5.

This method was used both with feature vectors f and the PCA-

LDA transformed feature vectors 𝝓. To determine the

parameter σ: c was set to 1, the unmodified feature vectors (f)

were used, σ was varied and the mean accuracy and RMSE

using mean trajectory of the SVM method were recorded over

20 iterations. Then, under the same conditions, σ was set to the

optimal value and c was varied. Additionally, the MPCA

hyperparameter was optimised for RMSE using mean trajectory

with the transformed feature vectors 𝝓 (Appendix A.6). Results

for optimal c, σ and MPCA (50 iterations) are shown in Figure 6.

Page | 3

Figure 6 - Accuracy and Mean (Average Trajectory) using SVM with

Gaussian Kernel. A: 𝛿𝑡=20, σ=0.1, no PCA-LDA. B: 𝛿𝑡=20, σ=0.1,

MPCA=85. C: 𝛿𝑡=40, σ=0.1, no PCA-LDA. D: 𝛿𝑡=40, σ=0.1, MPCA=190.

E: 𝛿𝑡=80, σ=0.07, no PCA-LDA. F: 𝛿𝑡=80, σ=0.07, MPCA=180. (MLDA=7,

c=1 and sP =0.7 in all cases). c (0.1-10 range) does not affect results and σ

(0.05- 0.2 range) only slightly affects results (Appendix A.6).

The best result (RMSE using average trajectory: mean = 7.92,

std = 0.80; over 50 iterations) occurred when σ=0.07, c=1,

MPCA=180 and the label was updated at t=320, 400, 480 and

560ms (δt=80ms). Further improvements on this method would

involve tuning the c and σ parameters together rather than

separately, as well as optimising them independently in each

decision tree layer and for different values of MPCA and MLDA.

VII. BAYESIAN CLASSIFIER

This method computes the conditional probability p(Ck|f) of the

feature vector f belonging to each class Ck and assigns f to the

class with highest probability. To train the classifier, a model

was created for each angle at each time from 320ms to 560ms

in δt time steps. Each model returns the probability of feature

vector f given a class Ck, i.e. p(f|Ck). The Bayesian classifier

assumes that the data follows a multivariate normal distribution:

𝑝(𝒇|𝐶𝑘) = (2𝜋)−𝑑/2 |𝚺|−1/2𝑒𝑥𝑝 ((−
1

2
(𝒇 − 𝝁)𝑇𝚺−1(𝒇 − 𝝁)))

where Σ is the covariance matrix of the training data belonging

to Ck, μ its mean and d the length of f. Bayes theory is then

implemented to calculate p(Ck|f):

𝑝(𝐶𝑘|𝒇) =
𝑝(𝒇|𝐶𝑘)𝑝(𝐶𝑘)

𝑝(𝒇)
=

𝑝(𝒇|𝐶𝑘)

𝑝(𝒇)
⋅

𝑁𝑐𝑘

𝑁𝑡𝑟𝑎𝑖𝑛

where p(f|Ck) is assumed to follow a multivariate normal

distribution, p(Ck) is the prior probability of class Ck, 𝑁𝐶𝑘
 is the

number of feature vectors in class k within the training set and

p(f) is independent of the class. The covariance matrix Σ is

singular since the number of samples is much lower than the

number of dimensions considered. To overcome this issue,

PCA-LDA was implemented to perform dimensionality

reduction on the data, which thus ensured the non-singularity of

Σ. The Bayes classifier can be visualised by fitting multivariate

Gaussian distributions on the data, after PCA-LDA, and

plotting their contour lines, as shown in Figure 2 for MLDA = 2.

This clearly shows a separation in 8 classes, one for each

possible angle. Figure 7 shows the results obtained over 50

iterations using the Bayes classifier with optimal MPCA

(determined empirically using 20 iterations in Appendix A.7).

Figure 7 - Accuracy and RMSE (Average Trajectory) using Bayes Classifier.

A: 𝛿𝑡=20, MPCA=65. B: 𝛿𝑡=40, MPCA=69. C: 𝛿𝑡=80, MPCA=31.

(MLDA=7 and sP=0.7 in all cases).

The best results for each δt were very close (8.20 for δt=20ms,

8.16 for δt=40ms, 8.22 for δt=80ms). As such, while the best

results occurred for δt=40ms, a bin size of 80ms could also be

used (resulting in smaller feature vectors and lower

computational complexity). Thus, the scheme ultimately used

with this method had MPCA=31 and the label was updated at

t=320, 400, 480 and 560ms (δt=80ms) (RMSE using average

trajectory: mean = 8.22, std = 0.88; over 50 iterations). Further

improvements on this method involve fitting the data on

different distributions or using hidden Markov models to

determine p(f|Ck), as well as optimizing MLDA.

VIII. MAJORITY VOTING

In all classifiers considered (k-NN, SVM and Bayesian)

δt=80ms was chosen as the optimal bin size. The output of the

three classifiers was combined in a majority voting scheme

where the final class label was predicted based on the most

frequent class label of all methods. This is the primary reason

that three classifier methods were chosen. The final class label

𝐶̂ was obtained at 320ms and updated every 80ms by:

𝐶̂= 𝑚𝑜𝑑𝑒{𝐶̂𝐾𝑁𝑁, 𝐶̂𝑆𝑉𝑀, 𝐶̂𝐵𝑎𝑦𝑒𝑠} . In cases where all methods

produce different classification outputs (relative frequency of

each predicted class is equal to one), then the final class label

was set to the output of the SVM classifier, which produced the

highest accuracy and lowest RMSE from all classifier methods.

Figure 8 - Accuracy and RMSE (Average Trajectory). A: Nearest Centroid,

classifier with MPCA=170. B: SVM classifier with c=1, σ=0.07 and MPCA=180.

C: Bayes classifier with MPCA=31. D: Majority Voting scheme. (In all cases

MLDA=7, 𝛿𝑡=80 and statistics were obtained using 50 iterations and sP=0.7)

As seen in Figure 8, the majority voting scheme was an

improvement over any of the three methods taken individually

(peak accuracy was 99.75% at 560ms and RMSE using average

trajectory: mean = 7.61, std = 0.82; over 50 iterations).

IX. PRINCIPAL COMPONENT REGRESSION

The x and y hand positions can be predicted by implementing a

linear regression model for each angle at each time of interest

(t=320ms to t=560ms in steps of 20ms), which aims to estimate

the regression coefficient B such that:

𝒀 = 𝑿𝑩 + 𝜺

where Y corresponds to the centred x and y hand positions at

time t (for each class Ck: 𝒀 = 𝑯𝐶𝑘 (𝑡) − 𝑯̅𝐶𝑘 (𝑡)), X is the centred

input neural spikes at time t (for each class Ck, X is constructed

by setting each row to a feature vector (𝒇𝑇(𝑡) or 𝒇 ̃𝑇 (t)) and

performing 𝑿→𝑿 − 𝑿̅) and 𝜺 ~ 𝑁(0, 𝜎2) . Such problems are

often tackled using Ordinary Least Square (OLS) estimation:

𝑩̂𝑂𝐿𝑆 = (𝑿𝑇𝑿)−1(𝑿𝑇𝒀)

Since the number of dimensions is much higher than the number

of samples, XTX is singular, so OLS solution is intractable.

Additionally, noise in X may introduce spurious correlations in

the calculation of the regression coefficients. To avoid both

these problems, Singular Value Decomposition (SVD) was

used to calculate the r largest principal components and thus

reduce the dimensionality of the data. Specifically, the SVD of

X is given by X= UΣVT, where columns of U are the left singular

Page | 4

vectors, rows of VT are the right singular vectors and Σ is a

diagonal matrix whose entries are the singular values of matrix

XTX. This method is called Principal Component Regression

(PCR) [3] which is based upon least square regression and

principal component analysis (PCA). PCR solution (𝑩̂𝑃𝐶𝑅) is

obtained by:

𝑩̂𝑃𝐶𝑅 = 𝑽1:𝑟(𝚺1:𝑟)−1(𝑼𝑇
1:𝑟 𝒀)

where the subscript (1: 𝑟) denotes that the r largest singular

values are used in each of U, Σ, and V. Then for each testing

feature vector x(t) fed into the algorithm at time t, an angle 𝐶̂𝑘

was predicted and the appropriate 𝑩̂𝑃𝐶𝑅 (i.e. the weights

corresponding to the predicted angle at time t) were used to

estimate the hand position by:

𝒀̂(𝑡) = 𝒙(𝑡)𝑇𝑩̂𝑃𝐶𝑅(𝑡, 𝐶̂𝑘) + 𝑯̅𝒕𝒓𝒂𝒊𝒏
𝐶̂𝑘 (𝑡)

Note that for all t > 560ms, 𝒀̂(𝑡)=𝒀̂(560) (i.e. the last estimation

is retained). Choosing the optimal number of principal

components was essential to perform an accurate regression

model both in terms of RMSE and of computational complexity.

The r was optimized up to (𝑁𝐶𝑡𝑟𝑎𝑖𝑛
− 1), which is the maximum

rank of XTX, as the training data has 𝑁𝐶𝑡𝑟𝑎𝑖𝑛 trials for each angle.

This optimization is performed to minimize the RMSE error

given perfect angle classification. Figure 9 shows the RMSE (50

iterations, sp=0.7) of PCR for r up to 69 principal components.

When comparing the results with the average trajectory method,

PCR performed better for all r. The RMSE decreases with larger

number of components, which suggests that using 𝑟=(𝑁𝐶𝑡𝑟𝑎𝑖𝑛
- 1)

principal components does not result in overfitting.

Figure 9 - RMSE plot against increasing number of principal components (r)

up to 69, against the average trajectory benchmark method, with sp=0.7.

Similar trends were observed for different splits (sp=0.5, 0.6,

0.8, 0.9), as shown in Appendix A.8. This means that for dataset

D the maximum number of principal components was needed

to capture the information within the data, i.e. 𝑟 = (𝑁𝐶𝑡𝑟𝑎𝑖𝑛
− 1)

should be taken for all sp. On the other hand, the first feature

vector representation (𝒇̃), which spans a lower dimensionality

and whose data is more likely to be correlated showed the

lowest RMSE at r=10 (Appendix A.9). To better comprehend

this behavior, the normalised eigenvalues corresponding to each

angle in the whole dataset for both representations were plotted

(Appendix A.10). From the plots in Appendix A.10, it can be

seen that for 𝒇̃ not all bases were needed to fully capture the

information in 𝑿𝑇𝑿 (∑ 𝜆𝑖
70
𝑖=1 / ∑ 𝜆𝑖

99
𝑖=1 ≈ 0.994) whereas for f, all

the principle components (99 in the case of the whole dataset)

were needed (∑ 𝜆𝑖
98
𝑖=1 / ∑ 𝜆𝑖 ≈ 0.99499

𝑖=1).

X. NON-LINEAR LEAST MEAN SQUARES (N-LMS)

Alternatively, to find a nonlinear relationship between the

feature vectors and hand position (for each angle at different

times t as in Section IX), the nonlinear LMS algorithm can be

implemented. This algorithm allows online learning and has

increased expressive power and generalization capability

relative to linear models. These properties are achieved by

introducing a non-linearity to the output of the standard LMS

algorithm. A tanh activation function was used, where the hand

position is estimated from ℎ̂ = 𝑡𝑎𝑛ℎ(𝒘𝑇𝒌), where ℎ̂ represents

x or y coordinate estimates in each model, 𝒘 is the vector

containing the LMS weights and 𝒌 = [𝒇𝑻 1]𝑻 to account for

bias in the inputs. The hand positions were normalized to [-1,1]

in order to match the range of the tanh function. The learning

rule of the LMS weights is based on stochastic gradient descent:

𝒘(𝑛+1)=𝒘(𝑛)+𝜇(ℎ(𝑛) − ℎ̂(𝑛)) (1 − 𝑡𝑎𝑛ℎ2(𝒘𝑇(𝑛)𝒌(𝑛))) 𝒌(𝑛)

where 𝜇 is the learning rate and h is the true x or y hand position.

Since the sample size was insufficient to ensure convergence,

the LMS weights were pre-trained by overfitting on 33% of

Dtrain (over 500 epochs). As in Section IX, for all t > 560ms,

𝒀̂(𝑡)= 𝒀̂(560) . For optimal μ=0.015 (Appendix A.11), given

perfect angle classification, mean RMSE is 6.78 with std=0.52

(50 iterations, sP=0.7), which is inferior to results obtained using

PCR both in terms of RMSE and computational time.

Different activation functions and use of an adaptive learning

rate could improve performance of the N-LMS. Additionally,

adaptive scaling of the activation function could be used to

mitigate normalisation issues. Finally, perceptron models could

be connected in a deep neural network to perform regression.

XI. CONCLUSION

To decode the neural spikes of a monkey in order to obtain an

estimate of the x and y hand positions, Majority voting was used

to classify the angle every 80ms, as described in Section VIII,

with optimal hyperparameters derived throughout the report. At

each time t, the weights 𝑩̂𝑃𝐶𝑅 corresponding to the predicted

angle 𝐶̂𝑘 were used to estimate the hand position using PCR

with 𝑟 = (𝑁𝐶𝑡𝑟𝑎𝑖𝑛
− 1). Results for different sP are shown below.

Table 1. Mean RMSE and Std vs sP (50 iterations)

sp 0.5 0.6 0.7 0.8 0.9

Mean RMSE 7.96 7.73 7.37 7.05 6.85

Std RMSE 0.57 0.65 0.67 0.99 1.04

Predicted trajectories for a single run of the algorithm (sP=0.7)

are shown in Appendix A.0. The mean computational time for

training the algorithm on the whole dataset D was 26.05s (50

iterations). The mean time needed to predict a single trajectory,

after training on the whole dataset, was 0.15s (Appendix A.12).

Averaging methods employed in this report lose some temporal

aspects of the neural dynamics. Thus, in future iterations

different methods for processing the neural data could be used

to better capture the causality and time dependency within the

spike trains, such as the van Rossum distance metric [4].

Another improvement would be to use the tuning curves to

select optimal neurons both for classification and regression.

XII. AUTHORS CONTRIBUTIONS

GG and CH: Features 𝒇, Tuning curves/Population decoding,

PCA-LDA, k-NN, SVM, Majority Voting. AG and EO:

Features 𝒇̃, Average Trajectory, Bayesian, PCR, N-LMS.

XIII. REFERENCES

[1] Rao, R. P. N. (2013). “Signal Processing,” In: Brain Computer

Interfacing: An Introduction. Cambridge: Cambridge University Press,
pp. 109-148

[2] Keerthi, S. and Lin, C. (2003). Asymptotic Behaviors of Support

Vector Machines with Gaussian Kernel. Neural Computation, 15(7),

pp.1667-1689.
[3] Jolliffe I.T. (2002). “Principal Components in Regression

Analysis”. In: Principal Component Analysis. Springer Series in

Statistics. Springer, New York, NY, pp. 167-198

[4] Van Rossum M. (2001). "A Novel Spike Distance". Neural
Computation 13, pp. 751-763

Page | 5

XIV. APPENDIX

Appendix A.0

Figure 10 – Predicted and True trajectories for a single run (sP=0.7) for all angles. Note that predicted angle updates every 80ms until

t=560ms, which accounts for the sudden changes in direction in a few of the trajectories. These changes in predicted angle only occur for

neighboring directions.

Page | 6

Appendix A.1

S(t) ∈ 𝑅98×𝑡 is a matrix containing all prior neural activity until time t. The matrix 𝑽(t) ∈ 𝑅98×⌊
𝑡

𝛿𝑡
⌋ was calculated by splitting S(t)

into bins δt and determining the firing rate within each bin: 𝑉𝑖,𝑗(𝑡) =
1

𝛿𝑡
∑ 𝑆𝑖 𝜏

𝑛𝑗 𝛿𝑡
𝜏=1+𝛿𝑡(𝑗−1) .

 f(t) ∈ 𝑅98⌊
𝑡

𝛿𝑡
⌋×1 was obtained by: 𝒇(𝑡) = [𝑉1,1(𝑡), … , 𝑉98,1(𝑡), … 𝑉

1,⌊
𝑡

𝛿𝑡
⌋
(𝑡), … , 𝑉

98,⌊
𝑡

𝛿𝑡
⌋
(𝑡)]

𝑇

, where ⌊⋅⌋ denotes the floor function.

𝒇̃(𝑡) ∈ 𝑅98×1 was obtained by: 𝒇̃(𝑡) =
1

𝑡
∑ [𝑆1,𝜏(𝑡), 𝑆2,𝜏(𝑡), … , 𝑆98,𝜏(𝑡)]𝑡

𝜏=1

𝑇

Appendix A.2

Angle 1 (30°) Angle 2 (70°)

Angle 3 (110°) Angle 4 (150°)

Angle 5 (190°) Angle 6 (230°)

Angle 7 (310°) Angle 8 (350°)

Figure 11 - Unnormalized Tuning Curves (centered at peak value/preferred direction) for all 98 neurons at time t=560ms, using the all of D.

 x axis represents angle, y axis represents firing rate, title represents neuron index

To optimize population decoding, the neurons that best represent each preferred direction had to be determined. This was performed

by first filtering out the unnormalized tuning curves that presented a large ratio of standard deviation of the peak value through trials

over the mean peak value through trials. This metric quantifies the potential error in determining both the peak value and its

respective angle (it was found, that setting a threshold of 0.5 filtered out all highly problematic cases). Subsequently, the two best

normalized tuning curves for each preferred direction were chosen with respect to the difference between the means of the two

largest values, hence quantifying the sharpness of the tuning curve. Only two neurons were chosen per angle since the 110o angle

had only 2 neurons associated with it in most splits of the training data. Normalized tuning curves that satisfy the criterion set (std

at peak over mean peak value less than 0.5) with the accompanying std/mean metric for the complete dataset D are plotted below.

Page | 7

Angle 1 (30°) Angle 2 (70°)

Angle 3 (110°) Angle 4 (150°)

Angle 5 (190°) Angle 6 (230°)

Angle 7 (310°) Angle 8 (350°)

Figure 12 – Normalized Tuning Curves (centered at peak value/preferred direction) for the 86 neurons satisfying criterion set, at time t=560ms, using the all of D.

x axis represents angle, y axis represents normalized firing rate (such that maximum is 1 and minimum is 0), title represents neuron index along with the value of

the std/mean metric

The 2 neurons for each angle were chosen automatically at each time (t=320ms to t=560ms in steps of 20ms), based on satisfying

the std/mean threshold of 0.5 in the unnormalized tuning curves and maximizing the largest to second-largest distance in the

normalized tuning curves. Population decoding results using these neurons over 20 iterations are shown below:

Figure 13 - Mean Classification Accuracy vs Classification time (sP=0.7, 20 iterations). Peak is 49.25% at 480ms.

Page | 8

Appendix A.3

Linear Discriminant Analysis (LDA) finds the optimal direction to separate data of different classes by rotating the feature space.

LDA is applied to the output (the weight matrices) of the PCA technique. The first step is to calculate the mean (𝒎𝑖) of the individual

classes as well as the overall mean feature vector (𝒎̃). Then, the between class scatter matrix (SB) and the within-class scatter matrix

(SW) are calculated according to the following equations:

𝑺𝐵 = ∑(𝒎𝒊 − 𝒎̃)

𝑐

𝑖=1

 (𝒎𝒊 − 𝒎̃)𝑇

𝑺𝑊 = ∑ ∑(𝒙 − 𝒎𝒊)

𝑥∈𝑐𝑖

(𝒙 − 𝒎𝒊)
𝑇

𝑐

𝑖=1

where x is every feature vector of the training set. Whilst PCA increases data variance both in SB and SW, LDA only increases data

variance SB and minimises the within class variance SW. The optimization problem can be described by the following equations:

𝑾𝑃𝐶𝐴 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑊|𝑾𝑇𝑺𝑇𝑾|

𝑾𝐿𝐷𝐴 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑊 |
𝑾𝑇𝑺𝐵𝑾

𝑾𝑇𝑺𝑊𝑾
|

Where ST is the total scatter matrix 𝑺𝑇 = 𝑺𝐵 + 𝑺𝑊.

In the case of LDA, to find the direction that separates the data in different classes, we aim to maximise the numerator 𝑾𝑇𝑺𝐵𝑾 and

minimising the denominator 𝑾𝑇𝑺𝑊𝑾. PCA is implemented to reduce the dimensionality of the data, keeping the MPCA eigenvectors

with the largest eigenvalues, and then performing LDA. The solution to the PCA-LDA algorithm becomes:

(𝑾𝑃𝐶𝐴
𝑇𝑺𝑊𝑾𝑃𝐶𝐴)

−1
(𝑾𝑃𝐶𝐴

𝑇𝑺𝐵𝑾𝑃𝐶𝐴)𝑾 = 𝜆𝑾

WLDA is obtained by keeping the MLDA eigenvectors of W with the largest eigenvalues. In the end the two methods are combined

according to the following transformation:

𝑾𝑜𝑝𝑡
𝑇 = 𝑾𝐿𝐷𝐴

𝑇𝑾𝑃𝐶𝐴
𝑇

Page | 9

Appendix A.4

Figure 14. Mean classification accuracy for k-NN over 20 iterations. From top to bottom: δt = 20, 40, 80.

Page | 10

Figure 15. Mean RMSE for k-NN over 20 iterations. Top left: δt = 20ms. Top-right: δt= 40ms. Bottom-left: δt= 80ms.

Minimum for δt=20 occurred at MPCA=35, for δt=40 at MPCA=260, for δt=80 at MPCA=170 with (MLDA=7 in all cases). With δt=80

and MPCA=170 producing best results. Note that within each heatmap, multiple values of MPCA produce results within 0.1 of the

minimum.

Page | 11

Appendix A.5

Comparison of Linear vs Gaussian kernel for SVM, using all feature vectors or mean feature vectors. For all cases considered,

t=320ms, δt=20ms, sP=0.7 and 20 iterations were used to obtain the statistics shown.

• When all feature vectors were used, the training input was 70 × 8 = 560 feature vectors. The first 2 layers of the decision

tree function as shown in Figure 5. However, in the 3rd layer the nearest centroid classifiers were replaced with SVM

classifiers (whose training input was 70 × 2 = 140 feature vectors). Both the Linear and Gaussian kernels performed much

worse than the k-NN classifiers (compare values in Figure below to results in Section V). Hence, this method was

abandoned in favour of using the mean feature vectors as inputs (similarly to the case of k-NN in Section V).

Figure 16 – Comparison of Performance of Linear Kernel SVM vs Gaussian Kernel SVM when all feature vectors are used for different c, σ values.

Linear kernel performance is shown on last row (t=320ms, δt=20ms, sP=0.7 and 20 iterations).

• When only the mean feature vectors were used, the training input was 8 feature vectors. The classifier was structured as

shown in Figure 5. The performance for the Gaussian kernel is extensively covered in Section VI as well as in Appendix

A.6. For the Linear kernel, the mean accuracy was found to be 72.46% for c=1 (where, as in the Gaussian case for mean

vector input, the influence of c on RMSE is minor). Results for both kernels using both types of inputs are tabulated below:

Table 2 – Comparison of all methods considered for SVM (t=320ms, δt=20ms, sP=0.7 and 20 iterations)

Method Mean accuracy (%)

Linear kernel with all feature vectors (c = 1) 84.13

Gaussian kernel with all feature vectors (c = 10, σ = 1) 83.29

Linear kernel with mean feature vectors (c = 1) 72.46

Gaussian kernel with mean feature vectors (c = 1, σ = 0.1) 95.84

As seen in Table 2, when all feature vectors are used for training, the Linear and Gaussian performances are comparable.

However, when the input is converted to the mean feature vector for each angle, the performance of the Gaussian kernel

increases and the performance of the Linear kernel decreases.

Page | 12

Appendix A.6

Figure 17 - Mean classification accuracy for SVM over 20 iterations with c=1 for different values of 𝜎 (denoted by s2 in the heatmap y-axis)

 Top left - 𝛿𝑡=20, Top right - 𝛿𝑡=40, Bottom 𝛿𝑡=80

Page | 13

Figure 18 - Mean RMSE for SVM over 20 iterations with c=1 for different values of 𝜎 (denoted by s2 in the heatmap y-axis).

 Top left - 𝛿𝑡=20, Top right - 𝛿𝑡=40, Bottom 𝛿𝑡=80

Minimum for δt=20 occurred at σ = 0.2, for δt=40 at σ = 0.1 and for δt=80 at σ = 0.07. All values of σ in the [0.05 – 0.1] range

produced very similar results. For convenience, at δt=20 the σ chosen was 0.1 (which is acceptable since the results between σ=0.1

and σ = 0.2 vary by only 0.02 in mean RMSE.

Page | 14

Figure 19 - Mean classification accuracy for SVM over 20 iterations for

different values of c. From top to bottom: (𝛿𝑡=20, 𝜎=0.1), (𝛿𝑡=40, 𝜎=0.1),

(𝛿𝑡=80, 𝜎=0.07)

Figure 20 - Mean RMSE for SVM over 20 iterations for different values of c. From

top to bottom: (𝛿𝑡=20, 𝜎=0.1), (𝛿𝑡=40, 𝜎=0.1), (𝛿𝑡=80, 𝜎=0.07).

There is negligible variation in results for all values of c from 0.01 to 10. c=1 was chosen for all cases for convenience.

Page | 15

Figure 21 - Mean classification accuracy for SVM over 20 iterations with 𝜎=0.1, c = 1, MLDA = 7, for different values of MPCA.

Left - (𝛿𝑡=20, 𝜎=0.1), Right - (𝛿𝑡=40, 𝜎=0.1), Bottom - (𝛿𝑡=80, 𝜎=0.07)

Page | 16

Figure 22 - Mean RMSE for SVM over 20 iterations with c = 1, MLDA = 7, for different values of MPCA

Left - (𝛿𝑡=20, 𝜎=0.1), Right - (𝛿𝑡=40, 𝜎=0.1), Bottom - (𝛿𝑡=80, 𝜎=0.07)

Optimal hyperparameters: for δt=20, (σ=0.1, MPCA=85), for δt=40, (σ=0.1, MPCA=190), for δt=80, (σ=0.07, MPCA=180). Note

that within each heatmap multiple values of MPCA produce results within 0.1 of the minimum.

Page | 17

Appendix A.7

Figure 23. Mean classification accuracy for Bayes over 20 iterations. From top to bottom: δt = 20, 40, 80.

Page | 18

Optimal hyperparameters: for δt=20, MPCA=65, for δt=40, MPCA=69 and for δt=80, MPCA=31. Note that within each heatmap

multiple values of MPCA produce results within 0.1 of the minimum.

Figure 24. Mean RMSE for Bayes over 20 iterations. Top-left: δt = 20ms. Top-right: δt= 40ms. Bottom: δt= 80ms.

Page | 19

Appendix A.8

The lowest mean RMSE occurs at the maximum number of principle components in all cases. Thus, when using the whole

dataset to train the algorithm the maximum number of bases should be used (r = 99).

Figure 24. Mean and std RMSE against r principal components and for different sP. From top to bottom: sP = 0.5, 0.6, 0.8, 0.9.

Page | 20

Appendix A.9

Figure 25 -. Mean and std RMSE with PCR and Average trajectory, against r (20 iterations, sP=0.7) using Feature vector representation 𝒇̃.

The mean RMSE is lowest at r = 10 and increases for larger numbers of principal components. This suggests that the information

in the dataset can be expressed using only few principal components. Note that this behaviour is very different to that observed for

representation f. Additionally, the mean RMSE is higher for all r than the optimal result using f, thus the N-LMS and final algorithm

were based on representation f.

Appendix A.10

Figure 26. Normalized eigenvalues of the matrix (𝑿 − 𝑿̅)𝑇(𝑿 − 𝑿̅), with the matrix X as defined in Section IX (but with sP=1, i.e. considering the whole dataset),

against percentage of information retained for both feature vector representations, for each of the 8 angles (angles 1 to 8) and 13 distinct timepoints (t=320ms to

560ms in steps of 20ms). This means that there are 104 red and 104 blue lines plotted within the graph (with all red and all blue lines being virtually

indistinguishable from each other)

For representation 𝒇̃: In all cases considered, the first 70 eigenvalues capture more than 99.5% of the information.

For representation f: In all cases considered, more than 97 eigenvalues are required to capture more than 99.5% of the information.

Hence, all principal components are needed to successfully express (𝐗 − 𝐗̅)T(𝐗 − 𝐗̅).

Page | 21

Appendix A.11

Figure 27 – mean RMSE using N-LMS vs learning rate μ. Angles were perfectly classified, to eliminate misclassification effects on the RMSE. Using sP=0.7 and

over 20 iterations, the minimum mean RMSE occurred at μ=0.015.

One model was created for each time (320ms to 560ms in steps of 20ms) as well as for each of the 8 angles (total 8 × 13 = 104

models). To generate these models, the nonlinear LMS learning rule was applied (as specified in Section X) where here n represents

the trial index (i.e. the algorithm is being looped through the 70 trials that correspond to each time-angle). The same learning rate

was used for all models, which may potentially be sub-optimal. Hence, the results could be further improved by optimizing a separate

learning rate μ for each model.

Appendix A.12

To assess the time necessary for the complete algorithm, the training time using the whole dataset D was recorded over 50 iterations.

(mean = 26.05s, with std = 3.24s). Subsequently, the model produced from training on the whole data was then used to estimate a

set of 800 trajectories. Since all the data available was used for training, the same dataset D had to be used for trajectory decoding.

This means that the RMSE output would not be representative of the performance of the algorithm, however, the time performance

should provide a valid indication of the time per estimate of the algorithm. Dataset D contains 800 trajectories and it was found to

require 122s on average to be decoded fully, using the model trained on the whole of D (50 iterations). Thus, the mean time required

to decode a single trajectory is approximately 0.153s.

The total runtime of the algorithm can be estimated as 26.05 + 0.153 × 𝑁 seconds, where N is the number of trajectories decoded

(for the validation dataset provided in the competition 𝑁 = 82 × 8 = 656, and hence the estimated runtime is 126.42s). Note that

runtimes vary with system specifications and as such are only meant as an indicator of time complexity/performance.

Appendix A.13

For cross-validation, the set D was randomly split into Dtrain and Dtest using random permutations of the trial indexes. The sizes of

Dtrain and Dtest were kept constant (set by the training-to-test ratio sP). It was also ensured that all classes had the same sample size

within each of Dtrain and Dtest. This process was performed multiple times/iterations and then the mean and std of the accuracy and

RMSE results produced over all iterations were reported. This method is defined as Monte-Carlo cross-validation and was preferred

over k-fold cross-validation as it explores a larger number of ways of partitioning the data with the drawback of not necessarily

including all datapoints in the testing set at least once (as in k-fold). To mitigate this drawback a significant number of iterations are

necessary (20 iteration were used for optimization tasks, while 50 were used for any evaluations). Clearly, increasing the number of

iterations would yield more accurate results, with the trade-off being computational time.

Page | 22

Appendix B

Figure 28 – Comparison of feature vector representations for k-NN at t=320ms, sP=0.7 using 20 iterations

Figure 29 - Comparison of feature vector representations for k-NN at t=560ms, sP=0.7 using 20 iterations

Representation 𝒇 produces better results than 𝒇̃ in the Nearest Centroid scheme (which outperform the k-NN scheme, see Section

V for details). Hence, representation 𝒇 was used in all classifiers throughout the report.

Page | 23

Appendix C.1 – Code for Position Estimator Training

function [modelParameters] = positionEstimatorTraining(trainingData)

% - trainingData:

% trainingData(n,k) (n = trial id, k = reaching angle)

% trainingData(n,k).trialId unique number of the trial

% trainingData(n,k).spikes(i,t) (i = neuron id, t = time)

% trainingData(n,k).handPos(d,t) (d = dimension [1-3], t = time)

r=size(trainingData,1)-1; %Number of Principal Components for PCR

t_train = 320:80:560; %times at which angle classification is updated

classificationParameters = struct;

[F,l,t]=organize_data(trainingData,80,t_train(end)); % create feature vectors for training data

dt=80

for t_ind=1:length(t_train)

 T=t_train(t_ind);

 X=F(t<=T,:);

 M_lda=7;

 M_pca_kNN=170;

 M_pca_SVM=180;

 M_pca_bayes=31;

 % DO PCA using max number of bases (N), the fact that we pre-do it makes the

 % code faster

 [~,mx,Wpca,~]=eigenmodel(X,size(X,2));

 [sb,sw]=make_sb_sw(X,l); %Compute scatter matrices

 M_pca=M_pca_kNN;

 % PCA-LDA for the optimal Mpca for kNN, Mlda=7

 Wopt=make_Wopt(Wpca,M_pca,M_lda,sb,sw);

 W=Wopt'*(X-mx);

 Wmean=zeros([size(W,1) 8]);

 for k=1:8

 Wmean(:,k)=mean(W(:,l==k),2);

 end

 %save model parameters

 classificationParameters(t_ind).Wopt_kNN=Wopt;

 classificationParameters(t_ind).mx_kNN=mx;

 classificationParameters(t_ind).Wmean_kNN=Wmean;

 % PCA-LDA for the optimal Mpca for SVM, Mlda=7

 M_pca=M_pca_SVM;

 Wopt=make_Wopt(Wpca,M_pca,M_lda,sb,sw);

 W=Wopt'*(X-mx);

 Wmean=zeros([size(W,1) 8]);

 for k=1:8

 Wmean(:,k)=mean(W(:,l==k),2);

 end

 %save model parameters

 classificationParameters(t_ind).Wopt_SVM=Wopt;

 classificationParameters(t_ind).mx_SVM=mx;

 classificationParameters(t_ind).Wmean_SVM=Wmean;

 %PCA-LDA for optimal Mpca for bayes, Mlda=7

 M_pca=M_pca_bayes;

 Wopt=make_Wopt(Wpca,M_pca,M_lda,sb,sw);

 W=Wopt'*(X-mx);

 %find the cov-mtrix and mean of the gaussian fitted in data

 A_tot=[];

 C_1_tot=[];

 m_tot=[];

 for k=1:8

 [A,C_1,m]=get_gauss_params(W(:,l==k));

 A_tot=cat(3,A_tot,A);

 C_1_tot=cat(3,C_1_tot,C_1);

 m_tot=cat(3,m_tot,m);

 end

 %save model parameters

 classificationParameters(t_ind).A_bayes=A_tot;

 classificationParameters(t_ind).C_bayes=C_1_tot;

 classificationParameters(t_ind).m_bayes=m_tot;

Page | 24

 classificationParameters(t_ind).Wopt_bayes=Wopt;

 classificationParameters(t_ind).mx_bayes=mx;

 classificationParameters(t_ind).Wmean_bayes=Wmean;

end

%create feature vectors for training data (dt=20)

T_end = 560;

dt=20;

T = (320:dt:T_end);

[feat,l,t]=organize_data(trainingData,dt,T_end);

%get hand positions from data

[~,~,x,y,~,~]=get_all_handPos(trainingData);

%sample at the values of time we care about

x_resampled = x(:,T,:);

y_resampled = y(:,T,:);

%create a regression model for each angle at each time

%Computing PCR

angle =1:8;

coeffs_gc = struct;

for angle_index =1:length(angle)

 handPos_x_for_regression = x_resampled(:,:,angle_index);

 handPos_y_for_regression = y_resampled(:,:,angle_index);

 for time_index = 1:length(T)

 features_temp = feat(t<=T(time_index),l==angle_index);

 coeffs_gc(time_index, angle_index).mean_hand_pos_x =

mean(handPos_x_for_regression(:,time_index));

 coeffs_gc(time_index, angle_index).mean_hand_pos_y =

mean(handPos_y_for_regression(:,time_index));

 hand_pos_temp_x = handPos_x_for_regression(:,time_index)-coeffs_gc(time_index,

angle_index).mean_hand_pos_x;

 hand_pos_temp_y = handPos_y_for_regression(:,time_index)-coeffs_gc(time_index,

angle_index).mean_hand_pos_y;

 [~,mx,U,~]=eigenmodel(features_temp,r);

 W=U'*(features_temp-mx);

 coeffs_gc(time_index, angle_index).mean_feature=mx;

 bx=U*(W*W')^(-1)*W* hand_pos_temp_x;

 by=U*(W*W')^(-1)*W* hand_pos_temp_y;

 coeffs_gc(time_index, angle_index).values = [bx , by];

 end

end

average_traj = calculate_avg_traj(trainingData);

modelParameters.trajectory = average_traj;

modelParameters.classificationParameters = classificationParameters;

modelParameters.coeffs_gc = coeffs_gc;

modelParameters.r=r;

modelParameters.M_lda=M_lda;

modelParameters.M_pca_kNN=M_pca_kNN;

modelParameters.M_pca_SVM=M_pca_SVM;

modelParameters.M_pca_bayes=M_pca_bayes;

end

% this function calculates the average trajectory

function average_traj = calculate_avg_traj(trainingData)

classes = length(trainingData(1,:));

max_len_spikes = 0; % initialise the longest trial to 0

for c = 1:classes

 for i=1:length(trainingData(:,1))

 % extract the length of the spike trains for each trial

 len_spikes = length(trainingData(i,c).spikes(1,:));

 % check if this length of the spike is the largest

 if len_spikes > max_len_spikes

 max_len_spikes = len_spikes;

 end

 end

end

% make sure all lengths of the trajectories are the same, otherwise we cannot

Page | 25

% compute the average (number of data points must be the same across

% trajectories of the same class)

for c=1:classes

 for i=1:length(trainingData(:,1))

 for j=length(trainingData(i,c).spikes(1,:))+1:max_len_spikes

 % pad shorter handPos with the last value until

 % max_len_spikes. do not pad with zeros as you would compute the

 % wrong avg, do not cut to shortest trajectory as you would lose

 % information

 trainingData(i,c).handPos = [trainingData(i,c).handPos trainingData(i,c).handPos(:,

end)];

 end

 end

end

% compute the average trajectory

average_traj(classes).handPos = [];

for c=1:classes

 trajectories = zeros(2,max_len_spikes); % two rows, x and y pos

 for i=1:length(trainingData(:,1))

 for j=1:length(trainingData(i,c).handPos(1,:))

 % insert x and y handPos in the trajectory arrays

 trajectories(:,j) = trajectories(:,j) + trainingData(i,c).handPos(1:2,j);

 end

 end

 % compute the average trajectory for each class

 average_traj(c).handPos = trajectories(:,:)/length(trainingData(:,1));

end

end

%this function extracts PCA model parameters

function [N,mx,U,L]=eigenmodel(x,p)

N=size(x,2);

mx=mean(x,2);

A=x-mx;

S=A'*A/N;

[U,L]=eig(S);

p=min(p,size(U,2));

[~,ind]=maxk(diag(L),p);

U=A*U(:,ind);

U=U./sqrt(sum(U.^2));

L=L(ind,ind);

end

%this function makes the within-class/between class scatter matrices

function [sb,sw]=make_sb_sw(X,l)

c=unique(l);

mc=zeros(size(X,1),length(c));

mx=mean(X,2);

for im_id=1:length(c)

 mc(:,im_id)=mean(X(:,l==c(im_id)),2);

end

sb=(mc-mx)*(mc-mx)';

st=(X-mx)*(X-mx)';

sw=st-sb;

end

%create optimal PCA-LDA matrix

function [Wopt]=make_Wopt(Wpca,M_pca,M_lda,sb,sw)

[Wlda,L] = eig((Wpca(:,1:M_pca)'*sw*Wpca(:,1:M_pca))^-1*Wpca(:,1:M_pca)'*sb*Wpca(:,1:M_pca));

[~,ind]=maxk(diag(L),M_lda);

Wopt=Wpca(:,1:M_pca)*Wlda(:,ind);

end

%get scaling factor, covariance and mean for Bayesian

function [A,C_1,m]=get_gauss_params(X)

C=cov(X');

[~,S,~] = svd(C);

temp=S(S~=0);

a=10^(-sum(log10(temp))/length(temp));

C_1=a*(a*C)^-1;

A=-(size(C,1)/2)*log(2*pi/a)-0.5*log(det(a*C));

m=mean(X,2);

Page | 26

end

%create feature vectors (f)

function [X,l,t]=organize_data(data,dt,T_end)

T=dt:dt:T_end;

X0=zeros([98,size(data,1),size(data,2),length(T)]);

for ind=1:length(T)

 t1=dt*(ind-1)+1;

 t2=dt*ind;

 for k=1:size(data,2)

 for n=1:size(data,1)

 for i=1:98

 X0(i,n,k,ind)=sum(data(n,k).spikes(i,t1:t2))/dt;

 end

 end

 end

end

X1=zeros([size(X0,1)*floor(T(end)/dt) size(X0,2) size(X0,3)]);

t=zeros([1 size(X0,1)*floor(T(end)/dt)]);

for ind=1:floor(T(end)/dt)

 X1(((ind-1)*98+1):((ind-1+1)*98),:,:)=X0(:,:,:,ind);

 t(1,((ind-1)*98+1):((ind-1+1)*98))=T(ind);

end

X=zeros([size(X1,1) size(X1,2)*size(data,2)]);

l=zeros([1 size(X1,2)*size(data,2)]);

for k=1:size(data,2)

 X(:,(k-1)*size(X1,2)+(1:size(X1,2)))=X1(:,:,k);

 l(:,(k-1)*size(X1,2)+(1:size(X1,2)))=k;

end

end

%Extracting hand positions

function[mx,my,x,y,l,in_data]=get_all_handPos(data)

%mx, my = average trajectory

%x,y - row is trials, column is time, 3rd dimension is angle

%l (matrix) - row is length of trial, column is corresponding angle

x_mat=[];

y_mat=[];

for k=1:8

 for n=1:size(data,1)

 x=data(n,k).handPos(1,:);

 l(n,k)=length(x);

 while length(x)>size(x_mat,2) && size(x_mat,1)>0

 x_mat=[x_mat x_mat(:,end)];

 end

 while size(x_mat,2)>length(x) && size(x_mat,1)>0

 x=[x x(end)];

 end

 x_mat=[x_mat;x];

 y=data(n,k).handPos(2,:);

 while length(y)>size(y_mat,2) && size(y_mat,1)>0

 y_mat=[y_mat y_mat(:,end)];

 end

 while size(y_mat,2)>length(y) && size(y_mat,1)>0

 y=[y y(end)];

 end

 y_mat=[y_mat;y];

 end

end

x_mean=[];

y_mean=[];

x=zeros([size(x_mat,1)/8 size(x_mat,2) 8]);

y=zeros([size(y_mat,1)/8 size(y_mat,2) 8]);

for k=1:8

 x(:,:,k)=x_mat(((k-1)*n+1):(k*n),:);

 y(:,:,k)=y_mat(((k-1)*n+1):(k*n),:);

 x_mean=[x_mean;mean(x_mat(((k-1)*n+1):(k*n),:))];

 y_mean=[y_mean;mean(y_mat(((k-1)*n+1):(k*n),:))];

end

mx=zeros([1 size(x_mean,2) size(x_mean,1)]);

my=zeros([1 size(y_mean,2) size(y_mean,1)]);

Page | 27

for k=1:8

 mx(1,:,k)=x_mean(k,:);

 my(1,:,k)=y_mean(k,:);

end

in_data=zeros(size(x));

for k=1:8

 for n=1:size(in_data,1)

 in_data(n,1:l(n,k),k)=ones(1,l(n,k));

 end

end

end

Page | 28

Appendix C.2 – Code for Position Estimator

function [x, y, newModelParameters] = positionEstimator(testData, modelParameters)

% - test_data:

% test_data(m).trialID

% unique trial ID

% test_data(m).startHandPos

% 2x1 vector giving the [x y] position of the hand at the start

% of the trial

% test_data(m).decodedHandPos

% [2xN] vector giving the hand position estimated by your

% algorithm during the previous iterations. In this case, N is

% the number of times your function has been called previously on

% the same data sequence.

% test_data(m).spikes(i,t) (m = trial id, i = neuron id, t = time)

% in this case, t goes from 1 to the current time in steps of 20

%Saving length of input spike trains

T_end = length(testData.spikes);

% Parameters for SVM

s2=0.07;

c=1;

%Extracting model parameters for classification

classificationParameters=modelParameters.classificationParameters;

if T_end==320 || T_end==400 || T_end==480 || T_end==560

 t_ind=T_end/80-3;

 Xt=organize_data_testing(testData,80,T_end);

 %project features into optimal plane for kNN

 Wopt=classificationParameters(t_ind).Wopt_kNN;

 mx=classificationParameters(t_ind).mx_kNN;

 Wmean=classificationParameters(t_ind).Wmean_kNN;

 Wt=Wopt'*(Xt-mx);

 pred_kNN=do_kNN_fast(2,Wt,Wmean,1:8,1);

 %project features into optimal plane for SVM

 Wopt=classificationParameters(t_ind).Wopt_SVM;

 mx=classificationParameters(t_ind).mx_SVM;

 Wmean=classificationParameters(t_ind).Wmean_SVM;

 Wt=Wopt'*(Xt-mx);

 pred_SVM=do_SVM(Wt,Wmean,s2,c);

 %project features into optimal plane for Bayes

 Wopt=classificationParameters(t_ind).Wopt_bayes;

 mx=classificationParameters(t_ind).mx_bayes;

 Wt=Wopt'*(Xt-mx);

 p=[];

 m_tot=classificationParameters(t_ind).m_bayes;

 A_tot=classificationParameters(t_ind).A_bayes;

 C_1_tot=classificationParameters(t_ind).C_bayes;

 %determine p(features|class) from parameters in training dat

 for k=1:8

 m=m_tot(:,:,k);

 C_1=C_1_tot(:,:,k);

 A=A_tot(:,:,k);

 Y=Wt-m;

 temp1=diag(Y'*C_1*Y);

 p1=exp(A-0.5*temp1);

 p=[p;p1'];

 end

 [~,pred_bayes]=max(p);

 % do majority voting

 [pred_angle,freq]=mode([pred_kNN;pred_SVM;pred_bayes]);

 % if all frequencies are 1, pick SVM

 pred_angle(freq==1)=pred_SVM(freq==1);

else

 %if T_end is not time for update, keep previous label

 pred_angle=modelParameters.test_label;

end

%Regresion (PCR) to estimate hand position

Page | 29

dt = 20;

T = (320:dt:560);

[features_test]=organize_data_testing(testData,dt,min(T_end,T(end)));

coeffs_gc = modelParameters.coeffs_gc;

coeff_x = coeffs_gc(length(features_test)/98 - 15, pred_angle).values(:,1);

coeff_y = coeffs_gc(length(features_test)/98 - 15, pred_angle).values(:,2);

mx = coeffs_gc(length(features_test)/98 - 15, pred_angle).mean_feature;

mean_hand_pos_x = coeffs_gc(length(features_test)/98 - 15, pred_angle).mean_hand_pos_x;

mean_hand_pos_y = coeffs_gc(length(features_test)/98 - 15, pred_angle).mean_hand_pos_y;

x = (features_test-mx)'*coeff_x+mean_hand_pos_x;

y = (features_test-mx)'*coeff_y+mean_hand_pos_y;

%Note that by construction of the feature vector, if length>560, the result

%will stay at the value it had at 560.

modelParameters.test_label = pred_angle;

newModelParameters = modelParameters;

end

%kNN algorithm

function [labels,err] = do_kNN_fast(ord,test_feat,train_feat_mat,train_lab,NN_vec)

labels=zeros(length(NN_vec),size(test_feat,2));

err=zeros(length(NN_vec),size(test_feat,2));

for n=1:size(test_feat,2)

 test_feat_vec=test_feat(:,n);

 if ord==3

 aa=sqrt(sum(test_feat_vec.^2));%scalar

 ab=sqrt(sum(train_feat_mat.^2));%row vector

 [er1,ind1]=maxk(test_feat_vec'*train_feat_mat./(aa*ab),max(NN_vec));

 else

 [er1,ind1]=mink(sum((abs(test_feat_vec-train_feat_mat)).^ord),max(NN_vec));

 end

 for ind_NN=1:length(NN_vec)

 NN=NN_vec(ind_NN);

 ind=ind1(1:NN);

 er=er1(1:NN);

 train_lab1=train_lab(ind);

 [~,~,temp]=mode(train_lab1);

 er=er(ismember(train_lab1,temp{1}'));

 train_lab1=train_lab1(ismember(train_lab1,temp{1}'));

 [temper,temp]=min(er);

 labels(ind_NN,n)=train_lab1(temp);

 err(ind_NN,n)=temper;

 end

end

end

%SVM implemented using decision tree

function pred = do_SVM(Xt,Xmean,s2,c)

model1 = svmTrain(Xmean', [0 0 1 1 1 1 0 0]', c, @(x1, x2) gaussianKernel(x1, x2, s2));

model2 = svmTrain(Xmean(:,3:6)', [1 1 0 0]', c, @(x1, x2) gaussianKernel(x1, x2, s2));

model3 = svmTrain(Xmean(:,[1 2 7 8])', [1 1 0 0]', c, @(x1, x2) gaussianKernel(x1, x2, s2));

pred=zeros(1,size(Xt,2));

for n=1:size(Xt,2)

 p1=svmPredict(model1,Xt(:,n)');

 if p1==1 %3-6

 p2=svmPredict(model2,Xt(:,n)');

 if p2==1 %3-4

 pred(n)=do_kNN_fast(2,Xt(:,n),Xmean(:,3:4),3:4,1);

 else

 pred(n)=do_kNN_fast(2,Xt(:,n),Xmean(:,5:6),5:6,1);

 end

 else % 1 2 7 8

 p2=svmPredict(model3,Xt(:,n)');

 if p2==1 %1-2

 pred(n)=do_kNN_fast(2,Xt(:,n),Xmean(:,1:2),1:2,1);

 else

 pred(n)=do_kNN_fast(2,Xt(:,n),Xmean(:,7:8),7:8,1);

 end

 end

end

end

%create feature vector (f)

Page | 30

function [X]=organize_data_testing(data,dt,T_end)

T=dt:dt:T_end;

X=zeros([98*length(T),1]);

for ind=1:length(T)

 t1=dt*(ind-1)+1;

 t2=dt*ind;

 for i=1:98

 X(i+(ind-1)*98,1)=sum(data.spikes(i,t1:t2))/dt;

 end

end

end

%SVM train, from lectures (From Problem Sheet)

function [model] = svmTrain(X, Y, C, kernelFunction, ...

 tol, max_passes)

%SVMTRAIN Trains an SVM classifier using a simplified version of the SMO

%algorithm.

% [model] = SVMTRAIN(X, Y, C, kernelFunction, tol, max_passes) trains an

% SVM classifier and returns trained model. X is the matrix of training

% examples. Each row is a training example, and the jth column holds the

% jth feature. Y is a column matrix containing 1 for positive examples

% and 0 for negative examples. C is the standard SVM regularization

% parameter. tol is a tolerance value used for determining equality of

% floating point numbers. max_passes controls the number of iterations

% over the dataset (without changes to alpha) before the algorithm quits.

%

% Note: This is a simplified version of the SMO algorithm for training

% SVMs. In practice, if you want to train an SVM classifier, we

% recommend using an optimized package such as:

%

% LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)

% SVMLight (http://svmlight.joachims.org/)

%

%

if ~exist('tol', 'var') || isempty(tol)

 tol = 1e-3;

end

if ~exist('max_passes', 'var') || isempty(max_passes)

 max_passes = 5;

end

% Data parameters

m = size(X, 1);

n = size(X, 2);

% Map 0 to -1

Y(Y==0) = -1;

% Variables

alphas = zeros(m, 1);

b = 0;

E = zeros(m, 1);

passes = 0;

eta = 0;

L = 0;

H = 0;

% Pre-compute the Kernel Matrix since our dataset is small

% (in practice, optimized SVM packages that handle large datasets

% gracefully will _not_ do this)

%

% We have implemented optimized vectorized version of the Kernels here so

% that the svm training will run faster.

if strcmp(func2str(kernelFunction), 'linearKernel')

 % Vectorized computation for the Linear Kernel

 % This is equivalent to computing the kernel on every pair of examples

 K = X*X';

elseif contains(func2str(kernelFunction), 'gaussianKernel')

 % Vectorized RBF Kernel

 % This is equivalent to computing the kernel on every pair of examples

 X2 = sum(X.^2, 2);

Page | 31

 K = bsxfun(@plus, X2, bsxfun(@plus, X2', - 2 * (X * X')));

 K = kernelFunction(1, 0) .^ K;

else

 % Pre-compute the Kernel Matrix

 % The following can be slow due to the lack of vectorization

 K = zeros(m);

 for i = 1:m

 for j = i:m

 K(i,j) = kernelFunction(X(i,:)', X(j,:)');

 K(j,i) = K(i,j); %the matrix is symmetric

 end

 end

end

% Train

% fprintf('\nTraining ...');

dots = 12;

while passes < max_passes

 num_changed_alphas = 0;

 for i = 1:m

 % Calculate Ei = f(x(i)) - y(i) using (2).

 % E(i) = b + sum (X(i, :) * (repmat(alphas.*Y,1,n).*X)') - Y(i);

 E(i) = b + sum (alphas.*Y.*K(:,i)) - Y(i);

 if ((Y(i)*E(i) < -tol && alphas(i) < C) || (Y(i)*E(i) > tol && alphas(i) > 0))

 % In practice, there are many heuristics one can use to select

 % the i and j. In this simplified code, we select them randomly.

 j = ceil(m * rand());

 while j == i % Make sure i \neq j

 j = ceil(m * rand());

 end

 % Calculate Ej = f(x(j)) - y(j) using (2).

 E(j) = b + sum (alphas.*Y.*K(:,j)) - Y(j);

 % Save old alphas

 alpha_i_old = alphas(i);

 alpha_j_old = alphas(j);

 % Compute L and H by (10) or (11).

 if (Y(i) == Y(j))

 L = max(0, alphas(j) + alphas(i) - C);

 H = min(C, alphas(j) + alphas(i));

 else

 L = max(0, alphas(j) - alphas(i));

 H = min(C, C + alphas(j) - alphas(i));

 end

 if (L == H)

 % continue to next i.

 continue;

 end

 % Compute eta by (14).

 eta = 2 * K(i,j) - K(i,i) - K(j,j);

 if (eta >= 0)

 % continue to next i.

 continue;

 end

 % Compute and clip new value for alpha j using (12) and (15).

 alphas(j) = alphas(j) - (Y(j) * (E(i) - E(j))) / eta;

 % Clip

 alphas(j) = min (H, alphas(j));

 alphas(j) = max (L, alphas(j));

 % Check if change in alpha is significant

 if (abs(alphas(j) - alpha_j_old) < tol)

 % continue to next i.

Page | 32

 % replace anyway

 alphas(j) = alpha_j_old;

 continue;

 end

 % Determine value for alpha i using (16).

 alphas(i) = alphas(i) + Y(i)*Y(j)*(alpha_j_old - alphas(j));

 % Compute b1 and b2 using (17) and (18) respectively.

 b1 = b - E(i) ...

 - Y(i) * (alphas(i) - alpha_i_old) * K(i,j)' ...

 - Y(j) * (alphas(j) - alpha_j_old) * K(i,j)';

 b2 = b - E(j) ...

 - Y(i) * (alphas(i) - alpha_i_old) * K(i,j)' ...

 - Y(j) * (alphas(j) - alpha_j_old) * K(j,j)';

 % Compute b by (19).

 if (0 < alphas(i) && alphas(i) < C)

 b = b1;

 elseif (0 < alphas(j) && alphas(j) < C)

 b = b2;

 else

 b = (b1+b2)/2;

 end

 num_changed_alphas = num_changed_alphas + 1;

 end

 end

 if (num_changed_alphas == 0)

 passes = passes + 1;

 else

 passes = 0;

 end

 % fprintf('.');

 dots = dots + 1;

 if dots > 78

 dots = 0;

 fprintf('\n');

 end

 if exist('OCTAVE_VERSION')

 fflush(stdout);

 end

end

% fprintf(' Done! \n\n');

% Save the model

idx = alphas > 0;

model.X= X(idx,:);

model.y= Y(idx);

model.kernelFunction = kernelFunction;

model.b= b;

model.alphas= alphas(idx);

model.w = ((alphas.*Y)'*X)';

end

%gaussian kernel, from lectures (From Problem Sheet)

function sim = gaussianKernel(x1, x2, sigma)

%RBFKERNEL returns a radial basis function kernel between x1 and x2

% sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 and x2

% and returns the value in sim

% Ensure that x1 and x2 are column vectors

x1 = x1(:); x2 = x2(:);

sim = exp(-(norm(x1 - x2) ^ 2) / (2 * (sigma ^ 2)));

end

%SVM predict, from lectures (From Problem Sheet)

Page | 33

function pred = svmPredict(model, X)

%SVMPREDICT returns a vector of predictions using a trained SVM model

%(svmTrain).

% pred = SVMPREDICT(model, X) returns a vector of predictions using a

% trained SVM model (svmTrain). X is a mxn matrix where there each

% example is a row. model is a svm model returned from svmTrain.

% predictions pred is a m x 1 column of predictions of {0, 1} values.

%

% Check if we are getting a column vector, if so, then assume that we only

% need to do prediction for a single example

if (size(X, 2) == 1)

 % Examples should be in rows

 X = X';

end

% Dataset

m = size(X, 1);

p = zeros(m, 1);

pred = zeros(m, 1);

if strcmp(func2str(model.kernelFunction), 'linearKernel')

 % We can use the weights and bias directly if working with the

 % linear kernel

 p = X * model.w + model.b;

elseif contains(func2str(model.kernelFunction), 'gaussianKernel')

 % Vectorized RBF Kernel

 % This is equivalent to computing the kernel on every pair of examples

 X1 = sum(X.^2, 2);

 X2 = sum(model.X.^2, 2)';

 K = bsxfun(@plus, X1, bsxfun(@plus, X2, - 2 * X * model.X'));

 K = model.kernelFunction(1, 0) .^ K;

 K = bsxfun(@times, model.y', K);

 K = bsxfun(@times, model.alphas', K);

 p = sum(K, 2);

else

 % Other Non-linear kernel

 for i = 1:m

 prediction = 0;

 for j = 1:size(model.X, 1)

 prediction = prediction + ...

 model.alphas(j) * model.y(j) * ...

 model.kernelFunction(X(i,:)', model.X(j,:)');

 end

 p(i) = prediction + model.b;

 end

end

% Convert predictions into 0 / 1

pred(p >= 0) = 1;

pred(p < 0) = 0;

end

