
From Schematics to Block diagrams

Introduction

In our examples, we will only use resistors, capacitors, inductors and op-amps. Before we begin we
need to remind ourselves of the characteristics of each of those components.

1. Passive component characteristics

(a) Resistor

Time domain equation: VRES(t) = R · IRES(t)

Laplace domain equation: L {VRES(t)} = L {R · IRES(t)} ⇒

VRES(s) = R · IRES(s)

(b) Capacitor

Time domain equation: VCAP (t) = 1
C ·

∫
ICAP (t)

Laplace domain equation: L {VCAP (t)} = L { 1
C ·

∫
ICAP (t)} ⇒

VCAP (s) = 1
C·s · ICAP (s)

(c) Inductor

Time domain equation: VIND(t) = L · ddt(IIND(t))

Laplace domain equation: L {VIND(t)} = L {L · ddt(IIND(t))} ⇒

VIND(s) = L · s · IIND(s)
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2. Ideal Op-amp

Figure 1: Ideal Op-amp Schematic

The operation of ideal op-amp is characterized by the equation:

(a) VOP = A · (V+ − V−), where A is called the open-loop gain of the op-amp.

In the ideal case, we assume that A = K, where K is a very large constant.

The operation of an ideal op-amp can, therefore, be represented by the following block diagram:

Figure 2: Ideal Op-amp Block Diagram
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Examples using Ideal Op-Amps

1. Voltage Follower (Ideal Gain: G = 1)

Figure 3: Voltage Follower Schematic

To convert this into a block diagram we will utilize the op-amp block diagram derived previously.
All we need is to find V+, V− and VOP in terms of VIN and VOUT and remember that, by
definition, VOP = A · (V+ − V−). Let us demonstrate:

(a) V+ = VIN , we can rewrite V+ as VIN in in our block diagram.

(b) V− = VOUT , we can connect VOUT to V− directly in our block diagram (Feedback Loop!)

(c) VOP = A · (V+ − V−), where A = K

(d) VOUT = VOP , we can rewrite VOP as VOUT in our block diagram.

We can combine the above equations to draw the voltage follower in block diagram format:

Figure 4: Voltage Follower Block Diagram

By analysing the block diagram we obtain the Transfer function:

H(s) = VOUT (s)
VIN (s) = A

1+A

From that we can determine the Ideal Gain:

G = lim
K→∞

H(s) = 1
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2. Non-Inverting Amplifier (Ideal Gain: G = 1 + R2
R1

)

Figure 5: Non-Inverting Amplifier Schematic

Let us now, once again, try to extract the necessary equations to construct our block diagram.

(a) V+ = VIN , we can rewrite V+ as VIN in in our block diagram.

(b) KCL @ N1: V−
R1

= VOUT
R1+R2

⇒ V− = R1
R1+R2

· VOUT

We can now define β = R1
R1+R2

and place it between VOUT and V− in our block diagram.

(c) VOP = A · (V+ − V−), where A = K

(d) VOUT = VOP , we can rewrite VOP as VOUT in our block diagram.

We observe that the only difference to the voltage follower is the block β in the feedback loop:

Figure 6: Non-Inverting Amplifier Block Diagram

By analysing the block diagram we obtain the Transfer function:

H(s) = VOUT (s)
VIN (s) = A

1+β·A

From that we can determine the Ideal Gain:

G = lim
K→∞

H(s) = 1
β = 1 + R2

R1
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TASK 1

(a) Given that G = 1
β , rewrite H(s) as a function only of G and K.

(b) For K = 105, use MATLAB to sketch the bode plot of H(s) for G = 1, 102, 104.

(c) Define the error e = |G−H(s)
G |. Determine the maximum value of G, such that e < 1%.
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3. Inverting Amplifier (Ideal Gain: G = −R2
R1

)

Figure 7: Inverting Amplifier Schematic

Relevant equations:

(a) V+ = 0.

(b) KCL @ N1: V−−VIN
R1

= VOUT−V−
R2

⇒ V− = { R1
R1+R2

} · VOUT − {− R2
R1+R2

} · VIN
We can see that β = R1

R1+R2
defines again the feedback relation between V− and VOUT .

We need to define α = − R2
R1+R2

(it describes the relation between V− and VIN ).

The fact that V− = β · VOUT − α · VIN will be represented by a node.

Finally, defining α as a negative quantity is not necessary, but it is a trick that allows min-
imum differences between the block diagram of the inverting and non-inverting amplifier.

(c) VOP = A · (V+ − V−), where A = K

(d) VOUT = VOP , we can rewrite VOP as VOUT in our block diagram.

We can now connect all the blocks together to create a preliminary block diagram.

Figure 8: Inverting Amplifier Block Diagram (Preliminary)
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We can further simplify our block diagram into the following.

Figure 9: Inverting Amplifier Block Diagram

By analysing the block diagram we obtain the Transfer function:

H(s) = VOUT (s)
VIN (s) = α·A

1+β·A

From that we can determine the Ideal Gain:

G = lim
K→∞

H(s) = α
β = −R2

R1

TASK 2

(a) Given that |G| = R2
R1

, rewrite both α and β as a functions only of |G|.

(b) Use your answers to part (a) to rewrite H(s) as a function only of |G| and K.

(c) For K = 105, use MATLAB to sketch the bode plot of H(s) for G = 1, 102, 104.

7



A more realistic Op-Amp model

Up to this point in our analysis, we have been treating op-amps as components of:

(a) infinite input impedance (no current goes in to the + or - terminals)

(b) frequency independent open-loop gain A = K.

As well as completely ignoring:

(c) the op-amp output impedance (and its effects depending on the load being driven).

(d) numerous other shortcomings of real op-amps (such as bias currents, noise etc.).

As this is not an EE module, we will provide an op-amp model that only accounts for (b) and (c).
While this model is by no means complete, it is much closer to reality than the ideal case and
provides for interesting examples.

Figure 10: Non-Ideal Op-Amp Schematic

To avoid additional complexity we will use the dominant pole approximation of the (now frequency
dependant) open-loop gain: A = K

τ ·s+1 , where K is still a very large constant, but now there is a pole

at s = − 1
τ .

(a) VOP = A · (V+ − V−), where A = K
τ ·s+1

As the output impedance is no longer zero, we need to define a load of arbitrary impedance ZL and
include its effects in our calculations.

(Note that the load is not necessarily a resistor. It could be any combination of passive or active
components).

(b) KCL @ N1: VOP−VOUT
ROUT

= VOUT
ZL
⇒ VOUT = 1

1+
ROUT

ZL

· VOP

We can now define γ = 1

1+
ROUT

ZL

and place it between VOP and VOUT .
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Figure 11: Non-Ideal Op-Amp Block Diagram

Then, H(s) = VOUT (s)
V+(s)−V−(s) = A · γ

TASK 3

For K = 105, τ = 0.1 and ROUT = 100Ω, use MATLAB to sketch the bode plot of H(s) when:

(a) the load is a resistor RL = 1Ω, 100Ω, 10 kΩ.

(b) the load is a capacitor CL = 100pF, 10nF, 1µF .
(remember that the impedance of capacitor C is 1

C·s)
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Examples using a more realistic Op-Amp model

1. Voltage Follower (Ideal Gain: G = 1)

Figure 12: Voltage Follower Schematic

Relevant equations:

(a) V+ = V IN .

(b) V− = V OUT

(c) VOP = A · (V+ − V−), where A = K
τ ·s+1

(d) KCL @ N1: VOP−VOUT
ROUT

= VOUT
ZL
⇒ VOUT = 1

1+
ROUT

ZL

· VOP

We can see that γ = 1

1+
ROUT

ZL

defines again the relation between VOP and VOUT .

Corresponding Block Diagram:

Figure 13: Non-Ideal Voltage Follower Block Diagram

By analysing the block diagram we obtain the Transfer function:

H(s) = VOUT (s)
VIN (s) = A·γ

1+A·γ

From that we can determine the Ideal Gain:

G = lim
K→∞

H(s) = 1

10



TASK 4

(a) By examining the open-loop bode plots from the previous task, determine whether the
voltage follower is in danger of instability when the load is:

i. a resistor (ZL = RL).

ii. a capacitor (ZL = 1
CL·s).

To accomplish this observe the gain and phase margin in each case.

Bonus question: How many poles does the open loop transfer function have in each case?
How is this relevant in our stability analysis?

(b) For K = 105, τ = 0.1 and ROUT = 100Ω, use MATLAB to sketch the bode plot of the
transfer function H(s) when the load is:

i. is a resistor RL = 1Ω, 100Ω, 10 kΩ

ii. is a capacitor CL = 100pF, 10nF, 1µF

Does this confirm your findings from part (a)?
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2. Non-Inverting Amplifier (Ideal Gain: G = 1 + R2
R1

)

Figure 14: Non-Inverting Amplifier Schematic

Relevant equations:

(a) V+ = VIN

(b) KCL @ N1: V−
R1

= VOUT
R1+R2

⇒ V− = R1
R1+R2

· VOUT
β = R1

R1+R2
will be placed in the feedback loop.

(c) VOP = A · (V+ − V−), where A = K
τ ·s+1

(d) KCL @ N2: VOP−VOUT
ROUT

= VOUT
ZL

+ VOUT
R1+R2

⇒ VOUT = 1

1+
ROUT
R1+R2

+
ROUT

ZL

· VOP

We can now define γ′ = 1

1+
ROUT
R1+R2

+
ROUT

ZL

and place it in our diagram.

Figure 15: Non-Inverting Amplifier Block Diagram

At this point, we can make the very reasonable assumption that R1 +R2 >> ROUT .

This is possible because the gain of the amplifier is related to the ratio of the two resistors, not
their value. As such, any reasonable design will have at least one of R1 or R2 be much larger
than ROUT .
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With that assumption, γ′ 1

1+
ROUT
R1+R2

+
ROUT

ZL

simplifies to the previously used γ = 1

1+
ROUT

ZL

and our

block diagram becomes:

Figure 16: Non-Inverting Amplifier Block Diagram (simplified)

By analysing the block diagram we obtain the Transfer function:

H(s) = VOUT (s)
VIN (s) = A·γ

1+β·A·γ

From that we can determine the Ideal Gain:

G = lim
K→∞

H(s) = 1
β = 1 + R2

R1

TASK 5

For K = 105, τ = 0.1 and ROUT = 100Ω:

(a) use MATLAB to sketch the bode plot of β ·A · γ for G = 1
β = 1, 102, 104 when the load is:

i. a resistor RL = 10 kΩ

ii. a capacitor CL = 1µF

What are the gain and phase margins in each case? Do they change as G increases?

(b) use MATLAB to sketch the bode plot of H(s) for G = 1
β = 1, 102, 104 when the load is:

i. a resistor RL = 10 kΩ

ii. a capacitor CL = 1µF

How does the bandwidth vary as G increases?
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3. Inverting Amplifier (Ideal Gain: G = −R2
R1

)

Figure 17: Inverting Amplifier Schematic

Relevant equations:

(a) V+ = 0

(b) KCL @ N1: V−V IN
R1

= VOUT−V−
R2

⇒ V− = { R1
R1+R2

· VOUT } − {− R2
R1+R2

· VIN}

β = R1
R1+R2

will be placed in the feedback loop.

α = − R2
R1+R2

defines the relationship between V− and VIN .

(c) VOP = A · (V+ − V−), where A = K
τ ·s+1

(d) KCL @ N2: VOP−VOUT
ROUT

= VOUT
ZL

+ VOUT−VIN
R1+R2

⇒

VOUT = 1

1+
ROUT
R1+R2

+
ROUT

ZL

· VOP + 1

1+
R1+R2
ROUT

+
R1+R2

ZL

· VIN

γ′ = 1

1+
ROUT
R1+R2

+
ROUT

ZL

describes the relationship between VOUT and VOP .

We must also define δ = 1

1+
R1+R2
ROUT

+
R1+R2

ZL

.

This block will describe how VOUT is directly affected by VIN (without passing through all
the other stages in our block diagram).
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We can now connect all the blocks together to form a preliminary block diagram.

Figure 18: Inverting Amplifier Block Diagram (preliminary)

We can further simplify our block into the following.

Figure 19: Inverting Amplifier Block Diagram

At this point, we can once again make the assumption that R1 +R2 >> ROUT .

With that assumption,γ′ 1

1+
ROUT
R1+R2

+
ROUT

ZL

simplifies to the previously used γ = 1

1+
ROUT

ZL

and

δ = 1

1+
R1+R2
ROUT

+
R1+R2

ZL

simplifies to 0.
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This leads us to the simplified block diagram.

Figure 20: Inverting Amplifier Block Diagram (simplified)

By analysing the block diagram we obtain the Transfer function:

H(s) = VOUT (s)
VIN (s) = αA·γ

1+βA·γ

From that we can determine the Ideal Gain:

G = lim
K→∞

H(s) = α
β = −R2

R1
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TASK 6

To mitigate the stability issues present when driving capacitive loads, it is common practice to
place a resistor between the op-amp output and the load. This can be observed in the voltage
follower example depicted below:

Figure 21: Compensated Voltage Follower Schematic

The corresponding block diagram is of the form:

Figure 22: Compensated Voltage Follower Block Diagram

Given that the gain of the op-amp is given by: A = VOP (s)
V+(s)−V−(s) = K

τ ·s+1

(a) Calculate H(s) = VOUT (s)
VIN (s) in terms of A, B, Γ.

(b) By examining the schematic, determine the equations that describe blocks B and Γ.

(c) For a purely capacitive load (ZL = 1
CL·s):

i. Sketch an estimate of the gain and phase plot of B.

ii. Write down the equation for the phase ∠B(jω).

iii. Assuming the circuit designer chose RC = 0.5 ·ROUT :

a. Show that the minimum value of the phase occurs at ω = 2√
3·CL·ROUT

.

Then calculate the minimum value of the phase.
(Remember: d

dx(arctan(αx)) = α
α2·x2+1

)

b. can the phase margin of A ·B ever be smaller than 60◦?
(Regardless of the values of K, τ , ROUT , or CL)

(d) For K = 105, τ = 0.1, ROUT = 100Ω and ZL = 1
CL·s , use MATLAB to sketch the bode plot

of H(s) when CL = 1µF and RC = 0Ω, 10Ω, 100Ω, 1 kΩ

Which one provides the best performance? (Think about bandwidth and stability)
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