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1. Distance Metrics

The provided dataset is a D X N matrix, containing
N = 520 face images, each of size D = 46 X 56 = 2576
pixels. The N images describe 52 people with 10 images per
person. The dataset was partitioned in training (Xtrain) and
testing (Xtest) datasets, comprised of the first 320 images
(classes 1-32) and the last 200 images (classes 33-52)
respectively. A second representation was produced, by
normalizing each image to unit norm L2 (Xntrain, Xntest).

1.1. Baseline Retrieval

Retrieval was performed using KNN on Xtest and Xneest
using standard non-learned metrics for pixelwise image
similarity measurement: Manhattan, Euclidian, Chessboard,
Cosine Similarity and Normalized Cross-Correlation.
These experiments were evaluated using mean accuracy
@rank1, @rank10 and mean average precision.

'
o
=)

8

N
&

16 15

Accuracy @rankl
o o o
Iy
3

°
=y
=3

Manhattan  Euclidean Chessboard Cosine Xcorr

Z100] 93 %5 94 % 94 94 9 9%
z
s
@075
T 050
e
3 025
g
< 000
Manhattan  Euclidean Chessboard Cosine Xcorr
075
= Unmodified Images ™8 Normalized Images
050
e 2 34 3 3 31 31 33 33

0225, 13 12

0.00

Manhattan  Euclidean Chessboard

Figure 1. Scores for baseline retrieval

Cosine Xcorr

For Xtest and Xntest, best performance was observed for
normalized Cross-correlation and Manhattan distance
respectively, for all three performance scores. Note that at
each pixel location, there is large variance of intensities.
This guarantees a large maximum deviation between
images even of the same label, which explain why
Chessboard distance performs poorly.

Results for normalized images were generally better.
This is due to normalization minimizing differences in
average brightness across images. To further improve
retrieval  performance  for  pixelwise  similarity
measurements, histogram equalization is used to adjust
contrast within each image (Appendix A).
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1.2. Experiment 1

Histograms of pixel intensity for Xtest and Xntest were
made and used as new feature representations (HXtest,
HXn¢est). Additionally, histograms of Local Binary Patterns
were produced to measure texture (HXwLsp). The number of
bins was set to 51 to effectively quantize the data (as it is
standard practice to set #bins=+/D). The range of
histograms was set to the minimum and maximum feature
value within each dataset (e.g. 0 — 254 for pixel intensity of
Xtest), to ensure equivalent quantities were compared. It was
experimentally found that this yields better results.

Retrieval was performed, as in the previous experiment,
using standard non-learned metrics for histogram similarity
measurement: Euclidian, Cosine Similarity, Normalized
Cross-Correlation, Earth Mover distance and Intersection.

To assess our choice of #bins=51, the experiment was
repeated for all possible #bins (1 to 300). Due to limited
computational power the metrics used for assessing optimal
#bins were only Euclidian, Cosine and Chi-squared. It was
found that while #bins=51 is not always optimal - this will
depend on specific metric, specific performance score and
dataset (unnormalized, normalized, LBP) - it always
produces scores within 10% of the optimal (Appendix B).
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Figure 2. Scores for histogram representations (51 bins)

All metrics investigated perform similarly. As in the
previous experiment, HXntest outperforms HXtest due to
smaller brightness differences. The LBP representation
outperforms HXtest and HXntest for all metrics apart from
EMD, which indicates that texture is overall a better
discriminator of images than intensity.



Overall, the histogram representations perform poorly
compared to baseline results. This is expected as spatial
information is lost. To preserve this information, we split
each image into 16 sub-images (each with 161 pixels). Sub-
image histograms were created (#bins = 13 ~ y/161) and
concatenated to create a feature vector containing both
spatial information and intensity frequency.
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Figure 3. Scores for concatenated histograms

As expected, there is significant improvement compared
to both the previous histogram results and the baseline
experiment. Splitting LBP achieves the best performance.

1.3. Experiment 2

The Mahalanobis distance metric is used to perform
retrieval on both Xtest and Xntest. The pseudoinverse () of
the covariance matrix Of Xrain and Xntmin (X) was
computed and then applied on Xtest and Xntest respectively.

dyan (X1, x2) = (1 — x2)TE* (21 — x2)

To perform dimensionality reduction, we must reduce *
to an M by M form (Z3;), while preserving the variance in
our training set (denoted by X). To achieve this, we perform
PCA on X and obtain the normalized ordered eigenvectors
U and the ordered diagonal matrix of eigenvalues A. Then:

Iy = UyAyUL = i = Uy Al UL = GTG, where G = Ay/?U,

Then, the testing data (Y) is transformed by Z = GY
(hence, Z has M rows) and the Mahalanobis distance
between y1 and y2 reduces to ||z;-z,|
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Table 1. Scores for Mahalanobis distance metric
Unmodified Set Normalized Set
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Figure 4. Scores vs number of dimensions (M)

The results are comparable to those in the baseline
experiment. At optimal values of M, the scores are slightly
better. The optimal values of M differ between performance
scores and datasets but are all in the range M=54 to 116
(Appendix C). For M close to the rank of the non-reduced
covariance matrix of the training split (320-1=319),
overfitting occurs, and the scores drop.

1.4. Experiment 3

In this experiment, PCA-LDA was performed on the
training set and the resulting transformation applied to the
testing set. This process was conducted on representations
investigated in Sections 1.1 and 1.2. Retrieval was
performed using the same distance metrics that were used
in each respective section. Experiments were conducted for
arange of parameters to determine optimal Mpca and Mypa.
Due to time constraints, this search was only conducted for

Euclidian distance and Cosine similarity (Appendix D).
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Figure 5. Scores for transformed Xtest and Xnyest (M"“O"T =8°)

Mipaopr =25
For the hyperparameters chosen, there is an improvement
over the baseline scores. Note that, this is not the case for
all combinations of hyperparameters (for example high
values of Mpca result in overfitting).
Mpca_opt=10, Mida_opt=10 (#bins=51)
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Figure 6. Scores for transformed HXtest and HXnest
The results for HXtest/ HXntest, even for optimal values of
Mpca/MLpa, are worse than those in Section 1.2. For EMD,
Intersection and > metrics (which are designed to compare
pdfs), this can be attributed to the fact that the feature
vectors compared are not comprised of positive elements.



1.5. Experiment 4

Mahalanobis metric learning was used to improve
retrieval scores for Xtest and Xneest. Three techniques of
learning the metrics from the training split were explored.

The first method, LMNN, uses the training data to learn
a metric that brings each datapoint x as close to its k Nearest
Neighbors from within its class (called the target
neighbors), while also maximizing its distance from
“impostors” (datapoints that are of a different class but are
within the k Nearest Neighbors of x). The algorithm solves
a convex optimization problem and, hence, will not
converge to local minima. The size of the neighborhood is
specified by k. In our experiments we investigate both k=3
(standard practice) and k=9 (the maximum possible size).

The second method, NCA, learns a distance metric that
maximizes the leave-one-out classification accuracy in a
kNN scheme that is implemented with stochasticity. The
stochastic element of this algorithm allows for
implementation using gradient descent. However, the
optimization problem solved is not convex and, hence, there
is likelihood of convergence to local minima. Thus, the
results will be greatly affected by initial conditions.

The final algorithm used is LFDA, which combines the
ideas behind the supervised Fisher Discriminant Analysis
and the unsupervised Locality Preserving Projection to
learn a metric that minimizes scatter between the k-Nearest
Neighbors within a class and maximize between-class
scatter. The value of k used in this experiment is the
maximum possible (k=9).

Before application of the algorithms, dimensionality
reduction was performed. Scores are plotted below vs
number of dimensions. Standard Mahalanobis is added for
comparison. NCA is stochastic, thus results were produced
by averaging through five iterations. To minimize rounding
errors, normalized images are boosted by a factor of 1000.
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Figure 7. Scores for learnt Mahalanobis Metrics

LMNN with k=9 produces the highest peak but is very
computationally intensive. LFDA offers really good results,
but the performance drops very steeply as the number of
dimensions increases. NCA is the fastest to converge but
performs badly. LMNN and LFDA outperform the scores
of Experiment 2. The bad performance of NCA can be

attributed to convergence to local minima. NCA scores
have a steep peak at M=24 and then drop significantly. It is
interesting to note that without scaling the normalized
dataset by a factor of 1000, the LMNN scores for the
normalized data are much worse (rounding errors effect
performance). Peak scores in Appendix E.

2. Cluster Based Representations
2.1. Clustering

Two methods for unsupervised data clustering were
explored, k-Means and Agglomerative clustering. We first
perform clustering on our training data Xtrain and Xnerain,
and then assign labels to our clusters in a supervised way
using the Hungarian algorithm, which is widely used for
optimizing label assignment.
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Figure 8. Confusion matrices of Xtrain clustered through
k-Means (K=32), before (left) and after (right) the
application of the Hungarian algorithm

Labeling accuracy @rankl was measured for both
clustering algorithms with different number of clusters (K).
Note that as k-Means contains inherent randomness, results
were produced by averaging through five iterations.
Conversely, for a given distance threshold. agglomerative
clustering produces deterministic results.
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Figure 9. Accuracy @rank] vs K for Xtrain

The accuracy for both methods peaks at close to 40%.
This can be attributed to the fact that pixelwise intensity is
a weak discriminator of images. For more distinctive
representations of images, such as SIFT, we would expect
much higher accuracy. As expected, the accuracy peaks
when K=32 for both Xtrain /Xnrain using either algorithm.

Table 2. Peak Accuracy @rankl for Xerain, XNerain (K=32)

k - Means Agglomerative
Unnormalized 3791 39.38
Normalized 40.46 42.19

Results for Xntrain are better than those for Xtrain When
using either method. Overall, agglomerative clustering
performs better than k-Means, as well as being significantly
less computationally intensive.



2.2. Fisher Vectors
2.2.1. Representations Based on Cluster Centers

In this experiment, we use training data cluster centers
obtained in the previous section to create new testing data
representations. All clustering in this section is performed
using the agglomerative algorithm as it scored better in the
previous section. The first feature space consists of the
Euclidian distances of each image in the testing set to all
cluster centers, resulting in K features for each image. The
second feature space consists of the softmax probabilities
of the inverse of the Euclidian distances of each image to
all cluster centers (again K features per image). Retrieval is
performed on the new representations of Xtest and Xngest.
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Figure 10. Scores for
Repl - distance to
centers (K=32)

Figure 11. Scores for
Rep2 — softmax of inverse
distance to centers (K=32)

The results compare poorly to the scores obtained with
the baseline representation in section 1.1. The results for the
softmax approach are slightly better than those for the first
representation. Scores for both new representations of
Xtrain, using Euclidian distance metric for retrieval, are
plotted against the number of clusters (K) in Figure 12.
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Figure 12. Scores vs K for both representations on Xtrain

The above figure illustrates that the two new
representations perform poorly compared to the baseline for
all values of K. Rep-2 (softmax) outperforms Rep-1 for all
K. While scores for Rep-1 drop as K tends to the maximum
value of 320, scores for Rep-2 increase with K.

The relation between scores and the number of clusters
can be understood by considering the following: As K
increases over 32, the number of features per image
increases but, the cluster-centers become less representative
of the training data. Taking the inverse distance and
performing the softmax (Rep-2) allows us to exploit the
larger number of features without a penalty to accuracy.

2.2.2 Fisher vectors Representation

To obtain a fisher vector representation, we first perform
PCA to reduce dimensionality of the training data to M.
Then, the data is clustered using the agglomerative
algorithm and cluster centroids, variances and relative
masses are used to initialize a Gaussian Mixture Model
(GMM). The GMM is fitted onto the transformed training
data. Due to constraints in computational power, the
covariance matrices are set to diagonal.

Once the GMM converges, the fisher vector
representation of the testing set is constructed (with the
signed squared root operator applied to each vector, which
is then subsequently L2 normalized).

It is important to note, that we must initialize the GMM
with non-zeros variances. In practice, we found that when
M > 8, there were no zero-variance cases for 8§ <K < 42,
Retrieval was performed using Euclidian distance metric,
and it was found that for K € [8,42), peak scores occurred
when M = 319. Due to the inherent randomness in GMMs,
we run five iterations of the experiments and average the
results. To minimize rounding errors, normalized images
are boosted by a factor of 1000.
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Figure 13. Scores for Fisher vector representations
for different K

The Fisher vector representation produces much better
results than both representations in the previous section as
well as baseline. The results for the normalized images are
better than those for the unnormalized images. There is no
clear peak at K = 32, which indicates that peak performance
of the fisher vector representation does not correspond
necessarily with peak clustering accuracy.

Finally, it is important to note that initializing the GMMs
with the cluster variances and relative weights, instead of
just the cluster centers, yields significantly better results,
especially for K <26 or K > 38 (Appendix F).



Appendix A

Table 3. Scores for retrieval using equalized Xtest

@rank1 @rank10 mAP
L1 0.81 0.97 0.39
L2 0.76 0.97 0.37
Linf 0.26 0.69 0.15
Cosine 0.76 0.97 0.37
Intersection 0.81 0.97 0.39
Chi Square 0.74 0.98 0.38
EMD 0.16 0.65 0.13
Cross Corr 0.75 0.97 0.37
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Appendix C

Table 4. Peak Scores for Mahalanobis
dimensionality reduction

Unnormalized Normalized
Acc @rank1 0.735, for M=80 0.700, for M=99
Acc @rank10 0.965, for M=54 0.965, for M=57
mAP 0.343, for M=116 | 0.340, for M=80

Appendix D

Euclidian distance on Xtest:
Acc@ranklMAX fOI‘ MPCA=64, MLDA:25,
Acc@rank 1 OMAX for MPCAZIZO, MLDA: 13
mAPMAX for MPCA:64, MLDA:22

Cosine similarity on Xest:
Acc@ranklMAX for MPCA=64, MLDA:31
Acc@ranklOMAx for MPCA=80, MLDA=25
mAPMAX fOI‘ MPCA:72, MLDA:31

Euclidian distance on Xntest:
Acc@ranklMAX fOI‘ MPCA=80, MLDA=28
Acc@rankl OMAX fOI‘ MPCA=72, MLDA= 16
mAPMAX fOI‘ MPCA:104, MLDA:28

Cosine Similarity on Xnest :
Acc@ranklMAx for Mpca=80, MLpa=28
Acc@rankl OMAX for MPCA=72, MLDA= 16
mAPMAX for MPCA:104, MLDA:28

All histograms investigated have 51 bins.

Euclidian distance on HXtest :

Acc@rank 1 MAX for MPCA: 1 0, MLDA: 1 0,
Acc@rank10max for Mpca=14, MLpa=13
mAPMax for Mpca=8, MLpa=7

Cosine similarity on HXtest:
Acc@ranklMAX for MPCA:8, MLDA:8
Acc@ranklOMAx fOl‘ MPCA:12, MLDA:8
mAPMax for Mpca=8, M1pa=8

Euclidian distance on HXnqest:
Acc@ranklMAX for MPCA: 1 0, MLDA: 10
Acc@rank 1 OMAX for MPCA:7, MLDA: 10
mAPMmax for Mpca=8, Mirpa=8

Cosine Similarity on HXntest :
Acc@ranklMAX fOI‘ MPCA: 1 0, MLDA: 10
Acc@rank 1 OMAX for MPCA:7, MLDA: 10
mAPMAX fOI‘ MPCA:8, MLDA:8



Appendix E

Table 5. Peak scores for different learnt metrics

Unnormalized
@rank1 (@rank10 mAP
LMNN-9| 0.82, M=272 0.99, M=72 | 0.46, M=80
LMNN-3| 0.80, M=272 0.99, M=80 [0.43, M=272
NCA 0.63, M=256 0.93, M=24 | 0.34, M=24
LFDA-9 0.83, M=72 0.99, M=72 | 0.45, M=72
MAHA 0.74, M=80 0.97, M=112]0.34, M=112
Normalized

LMNN-9| 0.84, M=112 |1.00, M=120[0.49, M=112
LMNN-3| 0.83,M=312 ]0.99, M=136[0.47, M=136
NCA 0.63, M=24 0.95, M=24 | 0.36, M=24
LFDA-9 0.82, M=80 1.00, M=72 | 0.46, M=80
MAHA 0.7, M=136 0.96, M=56 | 0.34, M=80

Appendix F

Comparison of fisher vector representation with GMMs
initialized only on the cluster centers of the agglomerative
clustering algorithm vs representation with GMMS
initialized on the centers, covariances and relative weights
of the clusters.
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Figure 15. Scores for both Unnormalized and Normalized
for two initializations



