

1

1. Computationally Efficient PCA

1.1. Dataset & Partitioning

The provided dataset is a 𝐷 × 𝑁 matrix, containing
𝑁 = 520 face images, each of size 𝐷 = 46 × 56 = 2576
pixels. The N images describe 52 people with 10 images per
person. Every image is pre-processed to be a 2D centered
face portrait (Face Detection) to allow comparison for face
recognition. The dataset was partitioned using a 4:1 ratio
providing for a sufficient training set (𝑁௧௥௔௜௡ = 416) as well
as a testing set (𝑁௧௘௦௧ = 104) with two images per identity.

1.2. Principal Component Analysis (PCA)

PCA consists of projecting a set of observations onto a
feature space that spans the significant variations within the
set. Variation is captured by the covariance matrix of our
dataset. Its eigenvectors (principal components) form an
uncorrelated orthogonal basis set which spans the whole
image feature space, and its corresponding eigenvalues give
the amount of variation in each of these dimensions. To
perform PCA, we first normalize the training dataset by
removing the mean face from each image. We define

𝐴 = [𝜑ଵ, 𝜑ଶ, … , 𝜑ே] ∈ ℝே×஽

where 𝜑௜ = 𝑥௜ − 𝑥̅ and 𝑥̅ =
ଵ

ே
∑ 𝑥௜

ே
௜ୀଵ is the mean face

Figure 1. Mean Face of Training Dataset

In classic PCA, the covariance matrix is computed

(𝑆 =
ଵ

ே
𝐴𝐴் ∈ ℝ஽×஽), as well as its eigenvectors and

eigenvalues. It should be noted that:

𝑟𝑎𝑛𝑘(𝑆) = 𝑟𝑎𝑛𝑘(𝐴𝐴்) = 𝑟𝑎𝑛𝑘(𝐴) ≤ min (𝐷, 𝑁௧௥௔௜௡)

As D > Ntrain and 𝑥̅ a linear combination of vectors in 𝑥,

𝑟𝑎𝑛𝑘(𝐴) = 𝑟𝑎𝑛𝑘(𝑥 − 𝑥̅) ≤ 𝑁௧௥௔௜௡ − 1

Therefore, S has at most 𝑁௧௥௔௜௡ − 1 non-zero eigenvalues.

 Figure 2 shows the eigenvalues of S in descending order.
Note that the plot covers only the 415 largest principle
components, as the previous claim was empirically verified
(a clear drop in order of magnitude, from 10ଶ to 10ିଵ is
observed after M = 415). Hence, the first 415 principle
components hold all the information we need:

Figure 2. Eigenvalues of S in descending order

We exploit the above to reduce the time complexity and
memory requirements without losing any information by
using low-dimensional PCA. We compute the eigenvalues
and eigenvectors of the matrix 𝑆௟௢௪ =

ଵ

ே
𝐴்𝐴 ∈ ℝே×ே. Let

𝜆 and 𝑣 be the eigenvalues and eigenvectors of 𝑆௟௢௪:

𝑆௟௢௪𝑣 = 𝜆𝑣 ⇔ 𝐴
1

𝑁
𝐴்𝐴𝑣 = 𝐴𝜆𝑣 ⇔ 𝑆𝐴𝑣 = 𝜆𝐴𝑣

 Therefore, 𝑆௟௢௪ has the same 𝑁௧௥௔௜௡ eigenvalues as S,
and the eigenvectors, u, of S can be computed by 𝑢 = 𝐴𝑣.
Note that for reconstruction, we must normalize, ‖𝑢‖ = 1.

This allows us to perform PCA with identical results and
a significant reduction in computational time. Because the
time complexity of eigendecomposition is 𝑂(𝑛ଷ), we
expect much higher eigendecomposition time for 𝑆 ∈ ℝ஽×஽
than for 𝑆௟௢௪ ∈ ℝே×ே. This was empirically verified, 11.41
for S versus 0.12 seconds for 𝑆௟௢௪.

The low-dimensional PCA eigenvalues were identical to
those obtained by classic PCA (Figure 2). The eigenvectors
were also equivalent, with angular deviation of 0 or 𝜋.

Classic PCA Low – Dim PCA

Figure 3. First three eigenfaces for both methods

Pattern Recognition with Eigenfaces

Georgios Gryparis
Imperial College London

00598177
gg1409@ic.ac.uk

Paul Courty
Imperial College London

01247148
pc2816@ic.ac.uk

2

1.3. Face Reconstruction

As seen in Figure 2, most information in our dataset is
captured in the first few principle components. Depending
on the accuracy required, we can attempt to reconstruct our
data from first M principle components. The information
captured in the first M principle components, described
by[100 × ∑ λi

M
i=1]/ൣ∑ 𝜆𝑖

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1 ൧, is tabulated below.

Table 1. Information in M first principle components

Information Captured [%] Principle Component M
50 4
75 17
90 63
95 118
99 263

Face reconstruction from the feature space to the input
space (original images) is performed by adding the mean
face to the weighted sum of the facial features (eigenface):

𝑥෤௡ = 𝑥̅ + ෍ 𝑎௡௜𝑢௜

ெ

௜ୀଵ
 where 𝑎௡௜ = 𝜑௡

்𝑢௜

According to Table 1, the reconstruction accuracy will
increase the more principle components we add. The
reconstruction error 𝐽(𝑀) can be subsequently computed.
We defined the distortion measure as follows:

𝐽(𝑀) =
1

𝑁
෍ ‖𝑥௡ − 𝑥෤௡‖ଶ

ே

௡ୀଵ
= ෍ 𝜆௜

ே೟ೝೌ೔೙

௜ୀெାଵ

 The above equality is verified empirically in Figure 4.

Figure 4. Reconstruction error J (Mean square error) and

sum of N_train-M-1 last eigenvalues vs M

Figure 5. Reconstruction of image 1 for M = {5, 50, 100,
416}. Real image included for comparison. As expected,

reconstruction improves with M (100% at M = 416)

1.4. Nearest Neighbor Classification

The Nearest Neighbor (NN) classification method was
applied to our testing dataset. The testing images were
projected in the feature space and individually compared to
the projections of the training dataset in our model. The
testing images were then labeled using the minimum
Euclidian Distance, Figure 6. For completeness, kNN was
also used for k=3, 5, 7 (see Appendix A). Best results were
obtained using simple NN, k=1 (67% accuracy for M > 94).

Figure 6. NN Recognition accuracy vs M

Figure 7. Example of failure and success in labelling

Figure 8. Normalized confusion matrix for M = 100

Finally, execution time and memory usage increase with
M (Figure 9). As such there is a trade-off between
recognition rate and computational cost. As accuracy
plateaus for M > 94, larger values of M offer no benefit.

Figure 9. Execution time and Memory Usage of NN

classification vs M

3

1.5. Alternative Classification Method

In this method, the principal (eigen) subspace is
computed for the images in each class within our data. Test
images are subsequently projected onto each eigenspace
and their reconstruction error measured. Test images are
assigned to the class whose eigenspace resulted in
minimum reconstruction error.

 Our training data has 52 classes each with 8 images, as
such we calculate 52 eigenspaces spanned by at most 7
principle components each. We tabulate the accuracy of this
method for varying hyperparameter M below.

Table 2. Alternative Method Accuracy vs M
M 1 2 3 4 5 6 7

Accuracy [%] 66.35 74.04 77.88 78.85 77.88 78.85 79.81

We note that this method produces much higher peak
accuracy than kNN classification (80% vs 67%)

2. Incremental PCA

2.1. Data partitioning and Algorithm description

The training data is further partitioned into four subsets
(X1, X2, X3, X4), Xi∈R2576×104, each comprised of 104
images (2 images per person).

Incremental PCA allows us to update an existing
eigenspace to account for new observations. This is
important because it results in reduced memory usage
making it possible to deal with large problems. It can, also,
under conditions, be faster to create an eigenmodel for a set
of observations incrementally, than by batch computation.
In solutions including multiple updates, the accuracy of the
model suffers; however, when only few updates are
performed the accuracy is on par with the batch method.

For a set of observations X∈RD×N, comprised of k subsets
{X1, X2, … Xk}, IPCA involves the following k steps:

i=1: Use low dimensional PCA to generate an
eigenmodel of X1: E1 = {N1, μ1, P1, Λ1}.1

i=2…k: Use low dimensional PCA to generate an
eigenmodel of Xi: Ei = {Ni, μi, Pi, Λi}.
Set E2=Ei and merge E1 and E2 to produce E3.

 Update E1=E3

 To merge E1 and E2 we use the following procedure:

1. N3 = N1+N2, μ3 = (N1μ1 + N2μ2)/N3 and Δμ = μ1 – μ2
2. Find the sufficient spanning set Φ of [P1 P2 Δμ] by QR

decomposition.

1 N1 is the number of observations in X1, μ1 is the mean of X1, Λ1

 contains
d1 largest eigenvalues, P1 the corresponding eigenvectors

3. Calculate S3 (formula in Appendix B)
4. Solve the eigenproblem S3 = R Λ3 RT.
5. Keep only d3 eigenvalues and eigenvectors.
6. Then P3 = ΦR, which is subsequently normalized.

2.2. Time Complexity

The total time complexity of low-dimensional PCA on a
D× 𝑁 dataset (including matrix multiplications, eigenvalue
decomposition and other steps) is O(Nq1D) 2. The merging
of two eigenmodels D × 𝑑ଵ and D × 𝑑ଶ has complexity
O(dtot

q2 D) with dtot = d1+d2+1 3 (details in Appendix B).
Hence, for incremental PCA on X, comprised of k subsets
{X1, X2, … Xk} we expect:

1. Since ∑ N୧
୯ଵ୩

୧ୀଵ < ൫∑ N୧
୩
୧ୀଵ ൯

୯ଵ
= N୯ଵ we expect that

the total time to compute eigenmodels for all k subsets
will be smaller than the batch time: ∑ 𝑡௜

୩
୧ୀଵ < 𝑡஻ .

If we set Ni = n =
୒

୩
 and di = d ⇒ dtot = 2d+1:

2. The time to merge eigenmodels E1 and E2 in step i, tmi,
is equal in all steps (tmi=tm ∀i). Similarly, all eigenmodel
computation times are equal (ti=t ∀i).

3. When dtot<<n, then tm<<t and thus total time for IPCA
ttot, is smaller than the batch time (𝑡௧௢௧ ≈ k × t < t୆).

4. As dtot increases, at some point ttot will become equal to
tB. This is significant as it marks the maximum value of
dtot for which IPCA is faster than batch PCA.

5. When dtot>>n, the value of tm will keep increasing.

 To verify the above, we measure the time to compute the
eigenmodel of our training data by batch PCA, Incremental
PCA and time to compute the eigenmodel of X1. For ease
of comparison we set the number of principal components
di = d ⇒ dtot = 2d+1. Results are plotted below (Fig 10).
Logscale has been utilized for better visualization. Results
are the execution times averaged over 20 recordings.

Figure 10. Computation time for Batch PCA, IPCA and
PCA on 1st subset only vs d

 Individual markers in Figure 10 represent ti, tmi for each
value of d and are averaged to create plots for t and tm. As
expected, they all fall very close to their respective means
(ti, tmi are approximately constant).

2 q1=max{p1,3-logNi(D)} and 1<p1<2 depending on the algorithms applied
3 q2=max{p2,3-logdtot(D)} and 1<p2<2 depending on the algorithms applied

4

For d > 25, the merging time (tm) exceeds the time to
produce an eigenmodel of the next subset (tm>t). For d > 30,
the IPCA becomes slower than the Batch computation. The
time necessary to eigenmodel the first subset is very close
to the average time to calculate an eigenmodel of any of the
subsets. Finally, the Batch calculation is much slower than
calculating the eigenmodels of subspaces (which is
expected as they differ in size by a factor 4).

We conclude that if we are prepared to take less than 30
principal components (thus setting an upper bound to our
accuracy) we can use incremental PCA which will be faster
and more memory efficient. Note that for this to be valid
the batch and incremental PCA must perform similarly in
terms of accuracy (see section 2.4).

2.3. Face Reconstruction

Face reconstruction error for PCA trained on X1
(PCASET-1), Incremental and Batch PCA trained on X
(PCAINC and PCAB) were computed using the same
methods as in subsection 1.3. See Figure 11. Note that in
the incremental case M represents the number of principle
components kept in each step (denoted by d in section 2.2).

Figure 11. Reconstruction error J (MSE) vs M

for PCASET-1, PCAINC and PCAB (M < Nsubset1=104)

We note that PCASET-1 has the lowest reconstruction error
for a given value of M. This is expected, since X1 has all of
its information in 𝑁ଵ − 1 = 103 principle components;
whereas X requires 𝑁௧௥௔௜௡ − 1 = 415 components.

 To explain why PCAINC and PCAB have almost identical
reconstruction errors, we must compare their eigenvectors.

We quantify this by the angular deviation cosିଵ ൬
ழ௨೔, ௩೔வ

ห|௨భ|ห ห|௩೔|ห
൰

Table 3.
Mean angular deviation between PCAINC and PCAB vs M

Principal Components M Mean Angular Deviation [°]
7 0.13
15 0.20
40 0.32
100 0.35

The mean angular deviation is small, explaining why the
reconstruction error is so similar.

As seen in Figure 12 most of the deviation comes from
the last eigenvectors (those capturing little information,
corresponding to small eigenvalues). Thus, the Mean
Angular Deviation overestimates the information lost
during incremental PCA.

Figure 12. Angular deviation vs eigenvector index
for M = {7, 15, 100}

Absolute percentage error in eigenvalues of PCAINC vs
PCAB is tabulated in Appendix A.

2.4. Face Recognition

Face recognition was performed using k Nearest
Neighbors classification. We observe that PCASET-1
performs poorly and has a peak recognition performance of
28% at 𝑘 = 3 and 𝑀 = 11. The poor performance can be
explained by the small sample size. PCAINC and PCAB
perform very similarly. Both have peak recognition
performance of 67% at 𝑘 = 1 and 𝑀 = 94. This is expected
as the two models have very small differences.

Figure 13. kNN recognition accuracy vs M

for PCASET-1, PCAINC, PCAB ቀ𝒌 = {𝟏, 𝟑, 𝟓, 𝟕} ቁ.

Blue: PCASET-1, Red: PCAINC, Yellow: PCAB.

 The most important parameter for incremental PCA is
the number of principle components kept in each step.
These can either be set to a constant value (M) or implicitly
set by setting a threshold for the eigenvalues whose
corresponding eigenvectors should be considered (e.g. keep
eigenvectors containing more than some percentage of the
total information)

5

3. PCA-LDA Ensemble for Face Recognition

3.1. PCA-LDA

3.1.1. Theoretical Background

 Linear Discriminant Analysis (LDA) consists of
transforming the provided data, through feature space
rotation, to find the direction that best separates distinctive
classes of data. Whereas PCA increases data variance both
within and between classes, LDA only increases data
variance between classes and minimizes within classes.
This allows for clearer and more distinct clusters to form in
feature space, ultimately increasing face recognition
accuracy. The optimization problem can be summarized by:

𝑾௣௖௔=argmax୛|𝑊்𝑆்𝑊|, 𝑾௟ௗ௔=argmax୛ ቚ
ௐ೅ௌಳௐ

ௐ೅ௌೈௐ
ቚ

𝑆ௐ is the within class scatter matrix, 𝑆஻ is the between

class scatter matrix, and the total scatter matrix 𝑆்=𝑆ௐ+𝑆஻.
In the case of LDA, finding the direction that best

separates data from different classes is equivalent to
maximizing the numerator (𝑊்𝑆஻𝑊) and minimizing the
denominator (𝑊்𝑆ௐ𝑊). The solution to this optimization
problem, given that 𝑆ௐ is non-singular, are the eigenvectors
of the matrix 𝑆ௐ

ିଵ𝑆஻:

 𝑆ௐ
ିଵ𝑆஻𝑊 = 𝜆𝑊

However, 𝑆ௐ ∈ ℝ஽×஽ has a maximum rank of 𝑁 − 𝑐,
where 𝑐 is the number of classes in the dataset. In our case
𝑁 < 𝐷, meaning that 𝑆ௐ is likely singular. Therefore, PCA
is implemented first to reduce the overall dimension. We
keep the 𝑀௣௖௔ eigenvectors with largest eigenvalues, and
then perform LDA. Thus, the previous equation becomes:

൫𝑊௣௖௔
் 𝑆ௐ𝑊௣௖௔൯

ିଵ
൫𝑊௣௖௔

் 𝑆஻𝑊௣௖௔൯𝑊 = 𝜆𝑊

The 𝑀௟ௗ௔ eigenvectors of W with the largest eigenvalues
are kept, forming the matrix 𝑊௟ௗ௔. Both 𝑀௣௖௔ and 𝑀௟ௗ௔ are
restricted by the rank of the scatter matrices 𝑆஻ and 𝑆ௐ
respectively, 𝑐 − 1 = 51 and 𝑁 − 𝑐 = 364 respectively.
Finally, combining the two methods, we obtain the
following optimal transformation:

𝑊௢௣௧
் = 𝑊௟ௗ௔

் 𝑊௣௖௔
்

3.1.2. Empirical Results

We performed PCA-LDA on our data and found that in
our empirical results rank(S஻) = 51 rank(S௪) = 364.

We then used Nearest Neighbour to classify our testing

data. The results are displayed in Figure 14 and Figure 15
for different hyperparameter values 𝑀௣௖௔ and 𝑀௟ௗ௔ .

Figure 14. Recognition Accuracy vs Mpca for varying Mlda

Figure 15. Accuracy for various Mlda and Mpca

 A maximum accuracy of 91.35% was obtained for
𝑀௣௖௔ = 134 and 𝑀௟ௗ௔ = 30, which is better than the
accuracy for any PCA method previously applied. To
obtain peak accuracy >70% we need 𝑀௟ௗ௔ > 9, for peak
accuracy >85% we need 𝑀௟ௗ௔ > 12. Furthermore, we must
ensure MPCA < 200 to avoid overfitting and MPCA > 50 to
avoid underfitting. Note that by definition MPCA > 𝑀௟ௗ௔.

Figure 16. Normalized Confusion Matrix

for Mlda=30, MPCA=134

Figure 17. Example of success and failure in labelling

6

3.2. PCA-LDA Ensemble

3.2.1. Randomization in feature space

 Introducing randomness to our model predictions results
in improved generalization and robustness. One way of
doing so, is sampling randomly our feature space. We
perform PCA to our dataset and keep the M0 eigenvectors
with largest eigenvalues. From the remaining N – 1 – M0
eigenvectors, we randomly select M1 eigenvectors. These
steps are performed a T number of times, with replacement,
to create T number of decorrelated submodels Wpca. LDA
is then applied to all these T submodels. As we do not have
the space to investigate Mlda as a variable, we set Mlda = 51
ensuring that all of the information after PCA is captured.
 Face recognition is performed using NN classification on
each submodel separately and then fusion rules are used to
label the data. The hyperparameters T, M0 and M1 are
varied and their effects measured. The fusion rules used are
simple majority voting and sum rules. Fusion sum rule is
described by:4

label୮୰ୣୢ୧ୡ୲ୣୢ(x) = argmax ୪౟
෍ P(l୧|x, t)

୘

୲ୀଵ

where 𝑃(𝑙௜|𝑥, 𝑡) is the probability the true label of x is 𝑙௜
when the tth individual model is used. To estimate these
probabilities, we use:

P෡(l୧|x, t) = ቌ1 +
(𝑤௧

௫)்𝑤௧
௜

ห|𝑤௧
௫|ห ቚห𝑤௧

௜หቚ
ቍ /2

where 𝑤௧
௜ = 𝑊௢௣௧,௧

் 𝜇௜ and 𝑤௧
௫ = 𝑊௢௣௧,௧

் 𝑥. Note that the final
estimates were scaled to ensure that ∑ P෡(l୧|x, t) = 1௖

௜ୀଵ ,
where c is the number of classes in the data.

3.2.2. Empirical Results

The recognition accuracy was plotted against M0 with
varying M1 and T. Peak values of PCA-LDA ensemble
were higher than peak PCA-LDA accuracy.

Figure 18. The recognition accuracy vs M0 for Mlda = 51
and a range of M1, T using majority voting and sum rule.

4 Wang, Xiaogang and Tang, Xiao; Random Sampling for Subspace Face
Recognition, The Chinese University of Hong Kong, February 24, 2005

Figure 19. Accuracy for PCA-LDA ensemble and for

individual models vs model index [t]
for MLDA=51, T=10, M0=50, M1=150

 As can be seen from Figures 17 and 18 the sum rule
outperforms majority voting significantly in term of peak
accuracy (92% vs 97% respectively). For some
combinations of hyperparameters, majority voting is more
accurate. Both fusion rules are an improvement over PCA-
LDA as well as the average of individual model accuracies
illustrating the effectiveness of randomization.

Figure 20. Normalized Confusion Matrix

for MLDA=51, T=10, M0=50, M1=150

4. Summary of Results

We explored several dimensionality-reduction methods
and classification algorithms for face recognition.
Parameters were varied to find optimal performance within
each method. Peak accuracies found within the set of
parameters investigated are summarized in Table 4.

Table 4. Peak recognition accuracies of the methods used
with their respective optimal hyperparameters

Method Accuracy [%] Hyperparameters
PCA kNN 67.31 k = 1, M > 94

PCA Alt-Method 79.81 M = 7
IPCA kNN 67.31 k = 1, M > 94
PCA-LDA 91.35 MPCA = 134, Mlda = 30
PCA-LDA

Feature Space
Randomization

97
Mlda = 51, T = 10,

M0 = 50, M1 = 150

7

Appendix A

Figure 21. Recognition accuracy of kNN algorithm vs M

(k=1, 3, 5, 7). This figure refers to section 1.4.

Table 5. Average absolute eigenvalue percentage error
between PCAINC and PCAB vs M.

This table refers to section 2.3

Principal Components M
Average absolute

eigenvalue percentage error
7 0.0526
15 0.0572
40 0.0589

100 0.0217

Appendix B

 To explain the reasoning behind the time complexities of
deduced in section 2.2 for the Incremental PCA we describe
the steps involved.

 The eigenmodel for Xi is generated by low dimensional
PCA which involves two types of computationally complex
tasks: matrix multiplication Ni×D with D×Ni matrices and
eigendecomposition of Ni×Ni matrix. The matrix
multiplication is naively O(Ni

2D). Smart algorithms reduce
this to O(Ni

p1D), with p1 ≈ 1.3 when 1 < logNi(D)<5 5. The
eigendecomposition has complexity O(Ni

3). Hence, the
total complexity is O(Ni

q1 D), with q1=max{p1,3- logNi(D)}.

 To merge E1 and E2 we use the following procedure:
1. N3 = N1+N2, μ3 = (N1μ1 + N2μ2)/N3 and Δμ = μ1 – μ2

5 Le Gall, François and Urrutia, Floren; Improved Rectangular Matrix

Multiplication using Powers of the Coppersmith-Winograd Tensor (2018)

2. Find the sufficient spanning set Φ of [P1 Pi Δμ] by QR
decomposition. Define dtot= d1+d2+1, then step
involves the QR decomposition of a D×dtot matrix
which is naively O(dtot

2D) but improved algorithms
reduce this to O(dtot

p2 D) with 1 < p2 < 2 depending on
size of dtot vs D and the characteristics of [P1 Pi Δμ].

3. Calculate S3 = A1+A2 where:

𝐀𝟏 =
୒భ

୒య
𝚽𝐓 𝐏𝟏𝚲𝟏(𝚽𝐓𝐏𝟏)𝐓 +

୒మ

୒య
𝚽𝐓 𝐏𝟐𝚲𝟐(𝚽𝐓𝐏𝟐)𝐓

𝐀𝟐 =
୒భ୒మ

୒య
మ 𝚽𝐓 𝚫𝛍 (𝚽𝐓 𝚫𝛍)𝐓

Note: A1, A2 are dtot×dtot. Their calculation requires
multiplication of dtot×D with D×d1 and D×d2
matrices. The above formula differs from the lecture
notes but is equivalent and reduces complexity.

4. Solve the eigenproblem B = R Λ3 RT. Since B is a
 dtot× dtot matrix, the complexity is O(dtot

3).
5. Keep only d3 eigenvalues and eigenvectors.
6. Then P3=ΦR, which is subsequently normalized.

Hence, the process of merging two eigenmodels has total
complexity O(dtot

q2 D) with q2 = max{p2, 3-logdtot (D)}.

