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1. Computationally Efficient PCA 
 

1.1. Dataset & Partitioning 
 

The provided dataset is a 𝐷 × 𝑁 matrix, containing     
𝑁 = 520 face images, each of size 𝐷 = 46 × 56 = 2576 
pixels. The N images describe 52 people with 10 images per 
person. Every image is pre-processed to be a 2D centered 
face portrait (Face Detection) to allow comparison for face 
recognition. The dataset was partitioned using a 4:1 ratio 
providing for a sufficient training set (𝑁௧ = 416) as well 
as a testing set (𝑁௧௦௧ = 104) with two images per identity. 

 

1.2. Principal Component Analysis (PCA) 
 

PCA consists of projecting a set of observations onto a 
feature space that spans the significant variations within the 
set. Variation is captured by the covariance matrix of our 
dataset. Its eigenvectors (principal components) form an 
uncorrelated orthogonal basis set which spans the whole 
image feature space, and its corresponding eigenvalues give 
the amount of variation in each of these dimensions. To 
perform PCA, we first normalize the training dataset by 
removing the mean face from each image. We define 

 

𝐴 = [ 𝜑ଵ, 𝜑ଶ, … , 𝜑ே]  ∈ ℝே× 
 

where 𝜑 = 𝑥 − �̅� and �̅� =
ଵ

ே
∑ 𝑥

ே
ୀଵ  is the mean face 

 
 

 
Figure 1. Mean Face of Training Dataset 

 

In classic PCA, the covariance matrix is computed       

(𝑆 =
ଵ

ே
𝐴𝐴்  ∈ ℝ×), as well as its eigenvectors and 

eigenvalues. It should be noted that: 
 

𝑟𝑎𝑛𝑘(𝑆) = 𝑟𝑎𝑛𝑘(𝐴𝐴்) = 𝑟𝑎𝑛𝑘(𝐴) ≤ min (𝐷, 𝑁௧) 
 

As D > Ntrain and �̅� a linear combination of vectors in 𝑥, 
 

𝑟𝑎𝑛𝑘(𝐴) = 𝑟𝑎𝑛𝑘(𝑥 − �̅�) ≤ 𝑁௧ − 1 
 

Therefore, S has at most 𝑁௧ − 1 non-zero eigenvalues.  

 Figure 2 shows the eigenvalues of S in descending order. 
Note that the plot covers only the 415 largest principle 
components, as the previous claim was empirically verified 
(a clear drop in order of magnitude, from 10ଶ to 10ିଵ  is 
observed after M = 415). Hence, the first 415 principle 
components hold all the information we need: 
 

 
Figure 2. Eigenvalues of S in descending order 

 

We exploit the above to reduce the time complexity and 
memory requirements without losing any information by 
using low-dimensional PCA. We compute the eigenvalues 
and eigenvectors of the matrix 𝑆௪ =

ଵ

ே
𝐴்𝐴  ∈ ℝே×ே. Let 

𝜆 and 𝑣 be the eigenvalues and eigenvectors of 𝑆௪: 
 

𝑆௪𝑣 = 𝜆𝑣   ⇔    𝐴
1

𝑁
𝐴்𝐴𝑣 = 𝐴𝜆𝑣   ⇔    𝑆𝐴𝑣 = 𝜆𝐴𝑣 

 

 Therefore, 𝑆௪  has the same 𝑁௧  eigenvalues as S, 
and the eigenvectors, u, of S can be computed by 𝑢 = 𝐴𝑣. 
Note that for reconstruction, we must normalize, ‖𝑢‖ = 1.  
 

This allows us to perform PCA with identical results and 
a significant reduction in computational time. Because the 
time complexity of eigendecomposition is 𝑂(𝑛ଷ), we 
expect much higher eigendecomposition time for 𝑆 ∈ ℝ× 
than for 𝑆௪ ∈ ℝே×ே. This was empirically verified, 11.41 
for S versus 0.12 seconds for 𝑆௪. 

 

The low-dimensional PCA eigenvalues were identical to 
those obtained by classic PCA (Figure 2). The eigenvectors 
were also equivalent, with angular deviation of 0 or 𝜋. 
 

Classic PCA Low – Dim PCA 

Figure 3. First three eigenfaces for both methods 
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1.3. Face Reconstruction 
 

As seen in Figure 2, most information in our dataset is 
captured in the first few principle components. Depending 
on the accuracy required, we can attempt to reconstruct our 
data from first M principle components. The information 
captured in the first M principle components, described 
by[100 × ∑ λi

M
i=1 ]/ൣ∑ 𝜆𝑖

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1 ൧, is tabulated below. 
 

Table 1. Information in M first principle components 
 

Information Captured [%] Principle Component M 
50 4 
75 17 
90 63 
95 118 
99 263 

 

Face reconstruction from the feature space to the input 
space (original images) is performed by adding the mean 
face to the weighted sum of the facial features (eigenface): 

 

𝑥 = �̅� +  𝑎𝑢

ெ

ୀଵ
    where   𝑎 = 𝜑

்𝑢  

 

According to Table 1, the reconstruction accuracy will 
increase the more principle components we add. The 
reconstruction error 𝐽(𝑀) can be subsequently computed. 
We defined the distortion measure as follows: 
 

𝐽(𝑀) =
1

𝑁
 ‖𝑥 − 𝑥‖ଶ

ே

ୀଵ
=  𝜆

ேೝೌ

ୀெାଵ
 

 
 The above equality is verified empirically in Figure 4. 
 

 
Figure 4. Reconstruction error J (Mean square error) and 

sum of N_train-M-1 last eigenvalues vs M 
 

 
Figure 5. Reconstruction of image 1 for M = {5, 50, 100, 
416}. Real image included for comparison. As expected, 

reconstruction improves with M (100% at M = 416) 

1.4. Nearest Neighbor Classification 

The Nearest Neighbor (NN) classification method was 
applied to our testing dataset. The testing images were 
projected in the feature space and individually compared to 
the projections of the training dataset in our model. The 
testing images were then labeled using the minimum 
Euclidian Distance, Figure 6. For completeness, kNN was 
also used for k=3, 5, 7 (see Appendix A). Best results were 
obtained using simple NN, k=1 (67% accuracy for M > 94). 

 

 
 

Figure 6. NN Recognition accuracy vs M 
 

 
Figure 7. Example of failure and success in labelling 

 

 

 
Figure 8. Normalized confusion matrix for M = 100 

 

Finally, execution time and memory usage increase with 
M (Figure 9). As such there is a trade-off between 
recognition rate and computational cost. As accuracy 
plateaus for M > 94, larger values of M offer no benefit. 

 

 
Figure 9. Execution time and Memory Usage of NN 

classification vs M 
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1.5. Alternative Classification Method 

In this method, the principal (eigen) subspace is 
computed for the images in each class within our data.  Test 
images are subsequently projected onto each eigenspace 
and their reconstruction error measured. Test images are 
assigned to the class whose eigenspace resulted in 
minimum reconstruction error. 

 

 Our training data has 52 classes each with 8 images, as 
such we calculate 52 eigenspaces spanned by at most 7 
principle components each. We tabulate the accuracy of this 
method for varying hyperparameter M below. 
 

Table 2. Alternative Method Accuracy vs M 
M 1 2 3 4 5 6 7 

Accuracy [%] 66.35 74.04 77.88 78.85 77.88 78.85 79.81 
 
We note that this method produces much higher peak 
accuracy than kNN classification (80% vs 67%) 
 
 
2. Incremental PCA 
 

2.1. Data partitioning and Algorithm description 

The training data is further partitioned into four subsets 
(X1, X2, X3, X4), Xi∈R2576×104, each comprised of 104 
images (2 images per person). 

 

Incremental PCA allows  us to update an existing 
eigenspace to account for new observations. This is 
important because it results in reduced memory usage 
making it possible to deal with large problems. It can, also, 
under conditions, be faster to create an eigenmodel for a set 
of observations incrementally, than by batch computation. 
In solutions including multiple updates, the accuracy of the 
model suffers; however, when only few updates are 
performed the accuracy is on par with the batch method. 
 

For a set of observations X∈RD×N, comprised of k subsets 
{X1, X2, … Xk}, IPCA involves the following k steps: 

 

i=1: Use low dimensional PCA to generate an 
eigenmodel of X1: E1 = {N1, μ1, P1, Λ1}.1 

i=2…k: Use low dimensional PCA to generate an 
eigenmodel of Xi: Ei = {Ni, μi, Pi, Λi}. 
Set E2=Ei and merge E1 and E2 to produce E3. 

    Update E1=E3 

 

 To merge E1 and E2 we use the following procedure: 
 

1. N3 = N1+N2, μ3 = (N1μ1 + N2μ2)/N3 and Δμ = μ1 – μ2 
2. Find the sufficient spanning set Φ of [P1 P2 Δμ] by QR 

decomposition. 

                                                           
1 N1 is the number of observations in X1, μ1 is the mean of X1, Λ1

 contains 
d1 largest eigenvalues, P1 the corresponding eigenvectors 

3. Calculate S3 (formula in Appendix B)  
4. Solve the eigenproblem S3 = R Λ3 RT. 
5. Keep only d3 eigenvalues and eigenvectors. 
6. Then P3 = ΦR, which is subsequently normalized. 

 

2.2. Time Complexity 

The total time complexity of low-dimensional PCA on a 
D× 𝑁 dataset (including matrix multiplications, eigenvalue 
decomposition and other steps) is O(Nq1D)  2. The merging 
of two eigenmodels D × 𝑑ଵ and D × 𝑑ଶ has complexity 
O(dtot

q2 D) with dtot = d1+d2+1 3 (details in Appendix B). 
Hence, for incremental PCA on X, comprised of k subsets 
{X1, X2, … Xk} we expect:  

 

1. Since ∑ N୧
୯ଵ୩

୧ୀଵ < ൫∑ N୧
୩
୧ୀଵ ൯

୯ଵ
= N୯ଵ we expect that 

the total time to compute eigenmodels for all k subsets 
will be smaller than the batch time: ∑ 𝑡

୩
୧ୀଵ < 𝑡 . 

If we set Ni = n = 


୩
 and di = d ⇒ dtot = 2d+1: 

2. The time to merge eigenmodels E1 and E2 in step i, tmi, 
is equal in all steps (tmi=tm ∀i). Similarly, all eigenmodel 
computation times are equal (ti=t ∀i). 

3. When dtot<<n, then tm<<t and thus total time for IPCA 
ttot, is smaller than the batch time (𝑡௧௧ ≈ k × t < t). 

4. As dtot increases, at some point ttot will become equal to 
tB. This is significant as it marks the maximum value of 
dtot for which IPCA is faster than batch PCA. 

5. When dtot>>n, the value of tm will keep increasing. 
 

 To verify the above, we measure the time to compute the 
eigenmodel of our training data by batch PCA, Incremental 
PCA and time to compute the eigenmodel of X1. For ease 
of comparison we set the number of principal components 
di = d ⇒ dtot = 2d+1. Results are plotted below (Fig 10). 
Logscale has been utilized for better visualization. Results 
are the execution times averaged over 20 recordings. 
 

 
 

Figure 10. Computation time for Batch PCA, IPCA and 
PCA on 1st subset only vs d 

 

 Individual markers in Figure 10 represent ti, tmi for each 
value of d and are averaged to create plots for t and tm. As 
expected, they all fall very close to their respective means 
(ti, tmi are approximately constant). 

2 q1=max{p1,3-logNi(D)} and 1<p1<2 depending on the algorithms applied 
3 q2=max{p2,3-logdtot(D)} and 1<p2<2 depending on the algorithms applied 
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For d > 25, the merging time (tm) exceeds the time to 
produce an eigenmodel of the next subset (tm>t). For d > 30, 
the IPCA becomes slower than the Batch computation. The 
time necessary to eigenmodel the first subset is very close 
to the average time to calculate an eigenmodel of any of the 
subsets. Finally, the Batch calculation is much slower than 
calculating the eigenmodels of subspaces (which is 
expected as they differ in size by a factor 4). 

We conclude that if we are prepared to take less than 30 
principal components (thus setting an upper bound to our 
accuracy) we can use incremental PCA which will be faster 
and more memory efficient. Note that for this to be valid 
the batch and incremental PCA must perform similarly in 
terms of accuracy (see section 2.4). 

 

2.3. Face Reconstruction 

Face reconstruction error for PCA trained on X1 
(PCASET-1), Incremental and Batch PCA trained on X 
(PCAINC and PCAB) were computed using the same 
methods as in subsection 1.3. See Figure 11. Note that in 
the incremental case M represents the number of principle 
components kept in each step (denoted by d in section 2.2). 

 

 
Figure 11. Reconstruction error J (MSE) vs M 

for PCASET-1, PCAINC and PCAB (M < Nsubset1=104) 
 

We note that PCASET-1 has the lowest reconstruction error 
for a given value of M. This is expected, since X1 has all of 
its information in 𝑁ଵ − 1 = 103 principle components; 
whereas X requires 𝑁௧ − 1 = 415 components.  

 

 To explain why PCAINC and PCAB have almost identical 
reconstruction errors, we must compare their eigenvectors. 

We quantify this by the angular deviation cosିଵ ൬
ழ௨,   ௩வ

ห|௨భ|ห ห|௩|ห
൰ 

 

Table 3.  
Mean angular deviation between PCAINC and PCAB vs M 

Principal Components M Mean Angular Deviation [°] 
7 0.13 
15 0.20 
40 0.32 
100 0.35 

 

The mean angular deviation is small, explaining why the 
reconstruction error is so similar. 

As seen in Figure 12 most of the deviation comes from 
the last eigenvectors (those capturing little information, 
corresponding to small eigenvalues). Thus, the Mean 
Angular Deviation overestimates the information lost 
during incremental PCA. 
 

 
 

Figure 12. Angular deviation vs eigenvector index 
for M = {7, 15, 100} 

 

Absolute percentage error in eigenvalues of PCAINC vs 
PCAB is tabulated in Appendix A. 

2.4. Face Recognition 

Face recognition was performed using k Nearest 
Neighbors classification. We observe that PCASET-1 
performs poorly and has a peak recognition performance of 
28% at 𝑘 = 3 and 𝑀 = 11. The poor performance can be 
explained by the small sample size. PCAINC and PCAB 
perform very similarly. Both have peak recognition 
performance of 67% at 𝑘 = 1 and 𝑀 = 94. This is expected 
as the two models have very small differences. 
 

 
Figure 13. kNN recognition accuracy vs M 

for PCASET-1, PCAINC, PCAB  ቀ𝒌 = {𝟏, 𝟑, 𝟓, 𝟕} ቁ. 

Blue: PCASET-1, Red: PCAINC, Yellow: PCAB. 
 
 The most important parameter for incremental PCA is 
the number of principle components kept in each step. 
These can either be set to a constant value (M) or implicitly 
set by setting a threshold for the eigenvalues whose 
corresponding eigenvectors should be considered (e.g. keep 
eigenvectors containing more than some percentage of the 
total information) 
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3. PCA-LDA Ensemble for Face Recognition 
 

3.1. PCA-LDA 

3.1.1. Theoretical Background 

 Linear Discriminant Analysis (LDA) consists of 
transforming the provided data, through feature space 
rotation, to find the direction that best separates distinctive 
classes of data. Whereas PCA increases data variance both 
within and between classes, LDA only increases data 
variance between classes and minimizes within classes. 
This allows for clearer and more distinct clusters to form in 
feature space, ultimately increasing face recognition 
accuracy. The optimization problem can be summarized by: 
 

𝑾=argmax|𝑊்𝑆்𝑊|, 𝑾ௗ=argmax ቚ
ௐௌಳௐ

ௐௌೈௐ
ቚ

 
𝑆ௐ is the within class scatter matrix, 𝑆 is the between 

class scatter matrix, and the total scatter matrix 𝑆்=𝑆ௐ+𝑆.  
In the case of LDA, finding the direction that best 

separates data from different classes is equivalent to 
maximizing the numerator (𝑊்𝑆𝑊) and minimizing the 
denominator (𝑊்𝑆ௐ𝑊). The solution to this optimization 
problem, given that 𝑆ௐ is non-singular, are the eigenvectors 
of the matrix 𝑆ௐ

ିଵ𝑆: 
 

 𝑆ௐ
ିଵ𝑆𝑊 = 𝜆𝑊 

 

However, 𝑆ௐ ∈ ℝ× has a maximum rank of 𝑁 − 𝑐, 
where 𝑐 is the number of classes in the dataset. In our case 
𝑁 < 𝐷, meaning that 𝑆ௐ is likely singular. Therefore, PCA 
is implemented first to reduce the overall dimension. We 
keep the 𝑀  eigenvectors with largest eigenvalues, and 
then perform LDA. Thus, the previous equation becomes: 

 

൫𝑊
் 𝑆ௐ𝑊൯

ିଵ
൫𝑊

் 𝑆𝑊൯𝑊 = 𝜆𝑊 
 
The 𝑀ௗ eigenvectors of W with the largest eigenvalues 
are kept, forming the matrix 𝑊ௗ. Both 𝑀  and 𝑀ௗ are 
restricted by the rank of the scatter matrices 𝑆 and 𝑆ௐ 
respectively, 𝑐 − 1 = 51 and 𝑁 − 𝑐 = 364 respectively. 
Finally, combining the two methods, we obtain the 
following optimal transformation: 
 

𝑊௧
் = 𝑊ௗ

் 𝑊
்  

 

3.1.2. Empirical Results 

We performed PCA-LDA on our data and found that in 
our empirical results rank(S) = 51 rank(S௪) = 364. 

 
We then used Nearest Neighbour to classify our testing 

data. The results are displayed in Figure 14 and Figure 15 
for different hyperparameter values 𝑀  and 𝑀ௗ . 

 
 

 
Figure 14. Recognition Accuracy vs Mpca for varying Mlda 

 

 
Figure 15. Accuracy for various Mlda and Mpca 

 

 A maximum accuracy of 91.35% was obtained for 
𝑀 = 134 and 𝑀ௗ = 30, which is better than the 
accuracy for any PCA method previously applied. To 
obtain peak accuracy >70% we need 𝑀ௗ  > 9, for peak 
accuracy >85% we need 𝑀ௗ  > 12. Furthermore, we must 
ensure MPCA < 200 to avoid overfitting and MPCA > 50 to 
avoid underfitting. Note that by definition MPCA > 𝑀ௗ. 
  

 
Figure 16. Normalized Confusion Matrix 

for Mlda=30, MPCA=134  
 

 
Figure 17. Example of success and failure in labelling 
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3.2. PCA-LDA Ensemble 

3.2.1. Randomization in feature space 
 

 Introducing randomness to our model predictions results 
in improved generalization and robustness. One way of 
doing so, is sampling randomly our feature space. We 
perform PCA to our dataset and keep the M0 eigenvectors 
with largest eigenvalues. From the remaining N – 1 – M0 
eigenvectors, we randomly select M1 eigenvectors. These 
steps are performed a T number of times, with replacement, 
to create T number of decorrelated submodels Wpca. LDA 
is then applied to all these T submodels. As we do not have 
the space to investigate Mlda as a variable, we set Mlda = 51 
ensuring that all of the information after PCA is captured.  
 Face recognition is performed using NN classification on 
each submodel separately and then fusion rules are used to 
label the data. The hyperparameters T, M0 and M1 are 
varied and their effects measured. The fusion rules used are 
simple majority voting and sum rules. Fusion sum rule is 
described by:4 

label୮୰ୣୢ୧ୡ୲ୣୢ(x) = argmax ୪
 P(l୧|x, t)



୲ୀଵ
 

where 𝑃(𝑙|𝑥, 𝑡) is the probability the true label of x is 𝑙  
when the tth individual model is used. To estimate these 
probabilities, we use: 

P(l୧|x, t) = ቌ1 +
(𝑤௧

௫)்𝑤௧


ห|𝑤௧
௫|ห ቚห𝑤௧

หቚ
ቍ /2 

 

where 𝑤௧
 = 𝑊௧,௧

் 𝜇 and 𝑤௧
௫ = 𝑊௧,௧

் 𝑥. Note that the final 
estimates were scaled to ensure that ∑ P(l୧|x, t) = 1

ୀଵ , 
where c is the number of classes in the data. 
 
3.2.2. Empirical Results 
 

The recognition accuracy was plotted against M0 with 
varying M1 and T. Peak values of PCA-LDA ensemble 
were higher than peak PCA-LDA accuracy. 
 

 
Figure 18. The recognition accuracy vs M0 for Mlda = 51 
and a range of M1, T using majority voting and sum rule. 

                                                           
4 Wang, Xiaogang and Tang, Xiao; Random Sampling for Subspace Face 
Recognition, The Chinese University of Hong Kong, February 24, 2005 

 
Figure 19. Accuracy for PCA-LDA ensemble and for 

individual models vs model index [t]  
for MLDA=51, T=10, M0=50, M1=150 

 

 As can be seen from Figures 17 and 18 the sum rule 
outperforms majority voting significantly in term of peak 
accuracy (92% vs 97% respectively). For some 
combinations of hyperparameters, majority voting is more 
accurate. Both fusion rules are an improvement over PCA-
LDA as well as the average of individual model accuracies 
illustrating the effectiveness of randomization. 
 

 
Figure 20. Normalized Confusion Matrix 

for MLDA=51, T=10, M0=50, M1=150 
   

4. Summary of Results 
 

We explored several dimensionality-reduction methods 
and classification algorithms for face recognition. 
Parameters were varied to find optimal performance within 
each method. Peak accuracies found within the set of 
parameters investigated are summarized in Table 4. 

 

Table 4. Peak recognition accuracies of the methods used 
with their respective optimal hyperparameters 

Method Accuracy [%] Hyperparameters 
PCA kNN 67.31 k = 1, M > 94 

PCA Alt-Method 79.81 M = 7 
IPCA kNN 67.31 k = 1, M > 94 
PCA-LDA 91.35 MPCA = 134, Mlda = 30 
PCA-LDA 

Feature Space 
Randomization 

97 
Mlda = 51, T = 10, 

M0 = 50, M1 = 150 
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Appendix A 
 

 
Figure 21. Recognition accuracy of kNN algorithm vs M 

(k=1, 3, 5, 7). This figure refers to section 1.4. 
 
 
 

Table 5. Average absolute eigenvalue percentage error 
between PCAINC and PCAB vs M.  

This table refers to section 2.3 

Principal Components M 
Average absolute 

eigenvalue percentage error 
7 0.0526 
15 0.0572 
40 0.0589 

100 0.0217 
 

 
Appendix B 
 
 To explain the reasoning behind the time complexities of 
deduced in section 2.2 for the Incremental PCA we describe 
the steps involved. 
 
 The eigenmodel for Xi is generated by low dimensional 
PCA which involves two types of computationally complex 
tasks: matrix multiplication Ni×D with D×Ni matrices and 
eigendecomposition of Ni×Ni matrix. The matrix 
multiplication is naively O(Ni

2D). Smart algorithms reduce 
this to O(Ni

p1D), with p1 ≈ 1.3 when 1 < logNi(D)<5 5. The 
eigendecomposition has complexity O(Ni

3). Hence, the 
total complexity is O(Ni

q1 D), with q1=max{p1,3- logNi(D)}. 
 

 To merge E1 and E2 we use the following procedure: 
1. N3 = N1+N2, μ3 = (N1μ1 + N2μ2)/N3 and Δμ = μ1 – μ2 

                                                           
5  Le Gall, François and Urrutia, Floren; Improved Rectangular Matrix 

Multiplication using Powers of the Coppersmith-Winograd Tensor (2018) 

2. Find the sufficient spanning set Φ of [P1 Pi Δμ] by QR 
decomposition. Define dtot= d1+d2+1, then step 
involves the QR decomposition of a D×dtot matrix 
which is naively O(dtot

2D) but improved algorithms 
reduce this to   O(dtot

p2 D) with 1 < p2 < 2 depending on 
size of dtot vs D and the characteristics of [P1 Pi Δμ]. 

3. Calculate S3 = A1+A2 where: 

𝐀𝟏  =
భ

య
𝚽𝐓 𝐏𝟏𝚲𝟏(𝚽𝐓𝐏𝟏)𝐓 +

మ

య
𝚽𝐓 𝐏𝟐𝚲𝟐(𝚽𝐓𝐏𝟐)𝐓  

𝐀𝟐 =
భమ

య
మ  𝚽𝐓 𝚫𝛍 (𝚽𝐓 𝚫𝛍)𝐓  

Note: A1, A2 are dtot×dtot. Their calculation requires 
multiplication of dtot×D with D×d1 and D×d2 
matrices. The above formula differs from the lecture 
notes but is equivalent and reduces complexity. 

4. Solve the eigenproblem B = R Λ3 RT. Since B is a
 dtot× dtot matrix, the complexity is O(dtot

3). 
5. Keep only d3 eigenvalues and eigenvectors. 
6. Then P3=ΦR, which is subsequently normalized. 

 
Hence, the process of merging two eigenmodels has total 
complexity O(dtot

q2 D) with q2 = max{p2, 3-logdtot (D)}. 
 


