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1 - Background, Challenges & Research Objectives
Deep Brain Stimulation (DBS) Open — Loop DBS
. Specific areas of the brain are stimulated using implanted electrodes e
. Approved treatment for Parkinson’s disease [1], epilepsy [2] and other neurological disorders > . -
— Stimulator
. Current Implementations are Open — Loop [3] ;?;.?f,’,‘)-iié‘};’ﬁ' -
o Stimulation waveforms are varied by trial and error using patient feedback $ ;1’
Adaptive Neuromodulation Closed — Loop DBS
. Local field potentials (LFP) represent aggregate activity of local neurons Simiaion, — [ e | ””;"pgmo;
. Power Spectral Density (PSD) of LFP (0.5Hz to 330Hz) contains relevant biomarkers [4] ) . g e
SN vogrammer
. Aim: Record LFPs while area is stimulated, then adjust stimulation adaptively 1 - : prce
o  Challenge 1: Stimulation artefacts contaminate recordings Semsor || Proceuies
o  Challenge 2: Transmit Data to Processing Unit o
o Challenge 3: Determine the biomarker-to-parameter relationship Figure 1 — Overview of open — loop vs

) closed — loop DBS adapted from [5]
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Design instrument for neural recordings

Versatile & Tunable

High — Precision

Low — Power & Handheld

Can suppress stimulation artefacts

Integrate modalities for real-time symptom monitoring
Investigate biomarkers that can be extracted using
the designed instrument

Develop algorithms for closed — loop DBS using

extracted biomarkers

Challenges & Research Objectives

1 - Background, Challenges & Research Objectives

g &2 =y ¢ Recording and Stimulating Electrodes are placed
70 IO i : i i
:, (e ;-_-\: X in appropriate brain nuclei.
L] A LA
; il "“ Y ‘:\“ e Typically, recording system reference is placed
v/.k!" ) i,’l\ “"l on the surface of the skull and stimulator
.
' :u reference of the shoulder.
[
1)
'l "l
R
'g ’ REF_REC (RECORDIND SYSTEM REFERENCE)
-
e —
{ +Vin (RECORDING ELECTRODE 1)
Q =>LMJI\L ANALOGUE WA,
+
FRONT - END
<Vin (RECORDING ELECTRODE 2)

ADC

Vstim (STIMULATING ELECTRODE)

STIMULATOR

Figure 2 — Set — up for recording during DBS
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System Overview

2 —Instrument Design

MICROCONTROLLLER

ok § ¥ !

(A) - INPUT (B) - NOTCH (C) - LOW-PASS (D) - OUTPUT

Tunable, 2" Order

Cascade of Active Butterworth

Fixed Gain Tunable Low-Pass Filter
”. Programmable
& . Multi-Stage Gain
AC Coupling Notch Filters
Small, Programmable Gain

Clock-Tunable, 8th Order
Switched Capacitor
Elliptical, Low-Pass Filter

Fixed, 2" Order
Passive, Low-Pass Filter

Figure 3 — Overview of System Architecture
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Figure 4 — Input Stage Schematics

Input Stage

2 —Instrument Design
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2 —Instrument Design
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Figure 5 - Bainter Notch Filter: Traditional and Modified Realisation
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. Calibration = Tuning error only from resistor resolution ! e

—— Nolch inaccurate by 1% |
-20

40 X 1.00043
Y -34.4077

. Range of resistor values determines tuning range (“‘J = /’;MJ>
MIN

fmIn

Magnitude dB
&
2

1. .3
E'fnotch "SR

. The gain at the target frequency is approximately: Y
MIN " “MAX *

0.85 0.9 0.95 1 1.05 11 115 1.2 125
Normalized Frequency

=120 —
0.8

. Strategy: Ensure sufficient resistor range and resolution Figure 6 — Example of tuning Error (Q=1). Gain at the
target frequency is -34dB
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2 —Instrument Design

. Parasitic Poles or Zeros limit the Notch depth.

—— Ideal Notch

2 otct ecte: jominant pole 100 times |larger than Notch Frequenc: I
. f t h f Notch Affected by ds t pi g q Y
— Gain atthe fpecn = Q- note = notch :
fpz (dominant) Af'fpz (dominant)

X1
Y -39.9131

. Sources of parasitic poles/zeros:

Magnitude dB
&
3

— Parasitic Capacitance/Inductance

o Negligible

-100

- Opamp Bandwidth e 0.85 0.9 0.95 1 1.08 11 115 12 125
Normalized Frequency

o Non — Negligible for ultra low-power opamps

Figure 7 — Example of Limited Notch depth due to
— Variable Resistor Bandwidth parasitic pole (Q=1). Notch Depth is -39dB.

o Non — Negligible for Digital Potentiometers

o Can be mitigated by different Ladder architecture
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SW (2N - 1) SW (N-1) . Digital Potentiometers are String DACs
Ax WX AX (ZN -1) RS WX
O—4 o — Convenient & Space-saving
Rs $ _ - —  Guaranteed Monotonic
s $ SW(@2N-2) (2N 2)Rg SW (N-2)
S — Increments in Resistance
[ J ® [ ] [ ] oA .
° ° . . —  Limited Bandwidth:
[ ] ® [ ] [ J
L « 2N Switches | Cannot utilize virtual ground
Rs $
® 3 SW(1) R SW(1)
) , o~ , «  Custom Current-Mode Binary-Weighted DAC
Rs 3 sw(o) ] SWI0) —  Space-Consuming
S - -
— Difficult to Guarantee Monotonicity
— Increments in Conductance
Figure 8 — String DAC Figure 9 — Binary DAC

Increased Bandwidth

* N Switches | Can fully utilize virtual ground
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c ¢ Variable Gain CLOCK ¢ Variable Gain
[l
{1 * Boost SNR before |—|
Switched Cap filter
R1 R2
+ - I\
czI J _‘/ % R;\N\' J_ +
= SC FILTER e :I: -

g

R4
R6

. gth i
e Low — Pass Filter 8™ order Switched

« Variable Cut-off /g/ Cap Low — Pass filter

* Attenuate Artefact to allow R3 * Clock—Tunable

higher boosting of SNR 1 * LPfilter to remove R7
= clock feedthrough =

Figure 10 — Low — Pass and Output Stage Schematics
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3 —Preliminary Results

Notch 4 LP & Output

First Device Implementation

Notch 3
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Notch 1
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Figure 11 — Digital Potentiometer based implementation on PCB
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3 —Preliminary Results

0
15 150 w( 0
-10 15 150
A T
-20
20
-30
= 30
= 40 g (A)
I = 40
© ]
50 4]
50
-60
60
70
70
——All 4 notches 3 notches
-80
Frequency (Hz) 5 Frequency (Hz)
Figure 12 — 2 stages tuned to 100Hz, and 2 stages tuned to 200Hz
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Figure 13 — (A) three (red) and four (green) stages tuned to
® Notch1l ® Notch2 Notch 3 Notch 4 = = = = Expected Depth

400Hz, (B) Zoomed — in to illustrate notch depth and width
Slide 12 of 15 Figure 14 — Experimental Notch Depth
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— Improved Instrument Design
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Slide 13 of 15 Figure 15 — Stackable Design is versatile and improves on Notch Depth
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5 — Contributions so far and Future Work

Contributions so far Future Work

» Modified Bainter topology

« 1stteration designed, laid out and
manufactured

* Measured Cascade of Tunable Notch
filters with more than 60dB attenuation

* Proposed versatile stackable design
with predicted >60dB per Notch stage

Figure 16 — Gantt Chart
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