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Question 1: Understanding of MDPs

1.

My CID is 00598177, so as specified the modified CID number to be used is 1598177.

Computing s(t) = (CID(t) + 2) mod 3, r(t) = CID(t) mod 3 yields the following trace:

T=5y15811818 0891551591

2.a. Given the data that we just observe (trace 7), and under the assumption that the Markov

2.b.

chain is stationary, we can estimate the transition matrix P,y by computing the relative
frequency of transition from s to s within our data:

A , number of transitions from s to s’ A 2/3 1/3 0
P(siy1=5sg =s) = — =P,y=11/2 0 1/2
total number of transitions out of s 0 1 0

~

Similarly, we can estimate the reward of a transition from s to s, Ry, as well as the
expected reward collected upon leaving state s, R, by using our data (note that the reward
for transitions not observed within our data is denoted by *):

A 11« A 2/3+1/340 |
R.o=1]10 x 1| =>R,= O+0+1/2 =1 0.5
x 1 % 04+14+0 1

The minimal MDP graph consistent with the data is shown below. The state space is
S = {s0, s1, s2} and the transition probabilities and rewards are as specified above. Note
that the reward for transitioning out of state s; is stochastic (0 with 50% probability and 1
with 50% probability).
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(a) If we consider the above Markov Reward Process as fully described by 1585/ and RS,
then we could calculate the value of each state using the Bellman equation. However,
the MRP does not have a terminating state and the process will loop forever with
positive rewards accumulated along the loop. Hence, the value of all states (including
sp) will increase as a function of v and reach infinity at v = 1. This is illustrated
by considering that by the Bellman equation: v = (Z —yP)"'R. But if we compute
LLH%(I — WPSS/)_IRS we find that it tends to infinity.

(b) An alternative approach is to consider the trace as a complete episode of an unknown
MDP that has terminal states (which is particularly dubious as the final state visited,
So, is also visited within the trace and is hence clearly not a terminating state). Then
we can use a Monte Carlo algorithm to estimate the value of states. We choose the
Every-visit MC algorithm and estimate the value of sy = 5+Z—+1 =2.
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(c¢) Regardless of whether the trace is a complete episode, we can use the TD algorithm.
The values of all states are initialized to 0 and then are successively updated as we move

along the trace. The update rule used is: V(s;) < V(s;)+ o (T‘t+1 + 4V (St41) — V(st)>

For v =1, @ = 1 (maximum learning rate chosen since the sample size is so small) the
TD method estimates the value of sy as 3.

Question 2: Understanding of Grid Worlds

1.
2.

[z,y, 2] = [1,7,7] = reward state = s3, p=10.3, 7 = 0.55

The optimal value function and optimal policy were computed using the value iteration algo-
rithm where the estimated optimal value function is obtained by incremental improvement
until it converges to the optimal value function. The optimal policy is then simply the policy
that maximizes the value of each state, given the optimal value function calculated. This ap-
proach has the benefit of no explicit policy until the very last step. Convergence was assumed
after a threshold of @ = 0.0001 was crossed. Given the set of actions, A = {N, E, S, W},
with stochastic effects, four transition matrices needed to be calculated.

14 iterations were needed for convergence of the algorithm. It was noted that increasing
0 to 0.001 yielded the same values to 3 decimal places but converged after 11 iterations.
Increasing 6 to 0.01 yielded similar results but did not require less iterations to converge
(still 11), thus providing no benefit. Figures 1 and 2 show the optimal value function and
optimal policy respectively.

Figure 1: Optimal value function. Values for Figure 2: Optimal policy. Arrows indicate
each state rounded to 2 decimal places. optimal action direction for each state (de-

terministic policy), multiple arrows from one
state indicate equiprobable choice between in-
dicated directions (stochastic policy).
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3.

4.

The optimal policy (7*) executes action 'East’ at state sg. The optimal policy is deterministic,
i.e P(a=East|m*, s9) = 1. Given that the action is East, the transition probability wiil be:

s' = s1p

1-p

P(s'|East, sg) = P ,
3 S € {ss, s9, 511}

p>025=p> 1%” which means that the action is more likely to succeed than fail. As

such, the optimal actions correspond to the optimal outcome.

The optimal outcome when the agent is at sg is clearly not sy; (corresponding to success of
action 'South’) as that would incur a penalty of -100. Additionally, for v > 0 (the agent
cares about more than just the immediate reward) staying in sg (corresponding to success of
action 'North’) is not optimal as the agent has not improved its position and has incurred
a transition cost of -1. Observing that V(s1g) > V(sg) we can see why transitioning into
s1o is optimal. However, determining intuitively the optimal choice between sg (success in
going 'West’) and sjo (success in going 'East’) is not obvious. That is because both states
are equidistant from the penalty state and from the reward state. This is captured by the
fact that their values are very close.

If p = 0.25, then the action chosen by the agent does not affect the outcome (all directions
equiprobable with 25% chance) and the optimal policy will consist of equiprobable choice
between all directions at all states. If p < 0.25 then the probability of going in the chosen
direction is less than that of going in any other direction and hence 'East’ would be a sub-
optimal choice at s9. In fact, for p < 0.25 it is expected that the optimal choice would be
"South’ (thus minimizing the likelihood of transitioning into si1).

If v = 0, then the optimal action would be the equiprobable choice between North, East and
West all with immediate reward -1. Finally, for v = 1 and p = 1 the optimal action would
be equiprobable choice between East and West with values of both sg and s19 equal to 8.

Note that my personalized value of v = 0.55 implies immediate rewards are weighted as
approximate twice as important as rewards after just one step and approximately 10 times
more important than rewards after just 4 steps (0.55% = 0.09).

The optimal value function that I obtained shows positive values only for states adjacent to
the reward state s3. State 4 has higher value than state 2. This can be explained by the fact
that the probabilities of reaching s3 after exactly one transition is equal for s, and sy:

P(si11 = s3|s1 = $2,77) = P(s411 = s3|s, = s4,77) =p
while the probabilities of reaching s; after exactly two transitions are not (let ¢ = %):

P(3t+2 = 53|3t = 52,7T*) = qp

= P(S119 = 54|85 = S0, T*) > P(S410 = S4|5; = 59, 7"
Plswa = sulsy = sa,n7) = 2gp T2 = Sulse =02 > Ploes = sulse = 7

In other words, there is a larger chance of collecting the reward within two steps if we start
at s, than if we start at so. This gives us insight into why the value of s; (adjacent to s4) is
higher than that of s¢ (adjacent to s3) even though they are equidistant to both the reward
and penalty state. With this reasoning in mind we can comprehend why the optimal action
at state sg is to go 'East’ along the s — s7 — s4 — s3 path.
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At p = 0.25 the agent cannot effect its direction by its choice, whereas for p > 0.25 it chooses
its most likely direction and for p < 0.25 the direction can be chosen implicitly (the agent
can choose to minimize the odds of going in a particular direction). Hence it stands to reason
that the values of all states will be at a minimum for p = 0.25. As the agent obtains more
and more ability to choose its direction (as p increases) the values will increase, reaching a
maximum at p = 1.

When p =1 and v = 1 the values will correspond to 10 minus the shortest path between the
state and the reward: V(sy) =9, V(s2) =10... V(s9) =7, V(s19) = 8.

For v = 0 the immediate rewards is the only thing that counts. Thus all states will have value
of -1 except for those adjacent to the reward and penalty states. Then, for p > 0.25, v = 0:
V(s) = —1 for s ¢ {s2, 53,54, 89,511}, V(s2) =V(ss) = —=3¢+10p, V(sg) = —p—2¢—100g.

The optimal policy calculated is deterministic with all optimal actions following the intuitive
rule of taking the agent away from the penalty state and towards the reward along the
shortest path. The only optimal action that is not obviously intuitive occurs at state sqg as
discussed at length. However, by examining the values of sy vs s4 and sg vs s;7 a reasonable
explanation has been established. The optimal policy becomes stochastic when for all values
of p when v € {0,1}. Tt also becomes stochastic for all values of v when p € {[0,0.25] U{1}}.
The optimal policy does not change for 0.2 < ~ < 0.65 and 0.25 < p < 0.7 (the values
possible for students doing the coursework). But at v = 0.875 and p = 0.3 we observe that
the optimal action at sg changes to "West’. It is interesting to note that for p > 0.3 that
change does not occur. Nor does it occur for v < 0.85 or v = 1.
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Appendix: MATLAB code

clc;close all;clear %Question 1
g=1; Ygamma=1
CID=[1 598 17 7]; % modified CID
S=mod ((CID+2) ,3) +1; Y%states in trace (note that 1->s0, 2—>sl, 3—>
s2
r=mod (CID,2) ; %rewards in trace
for ind=1:length (S) %calc trace in format specified
if S(ind)==1 tau(2xind—1)="s0"; end
if S(ind)==2 tau(2xind—1)="s1"; end
if S(ind)==3 tau(2xind—1)="s2"; end
tau(2+ind )=r (ind) ;
end
tau %display trace
P=zeros (3); %initialize transition matrix;
R=NaN(3) ; %initialize rewards matrix
%calculate trnasition matrix and reward matrix
for s=1:3
for ind=1:(length(S)—1)
if S(ind)==s
P(s,S(ind+1))=P(s,S(ind+1))+1;
R(s,S(ind+1))=r(ind);
end
end
P(s,:)=P(s,:) /sum(P(s,:));
end
P %display transition matrix
R %display reward matrix
Rs=nansum (R.xP,2) %calc and display reward vector
%every visit monte carlo
v0=0;

n_visits=0;
for ind=1:(length(S)—-1)
if S(ind)==1
vO=v0+sum(r (ind:(length(S)—-1)));
n_visits=n_visits+1;
end
end
v0=v0/(n_visits+(S(end)==1)) %result of monte carlo
%ID
V=[0 0 0];
a=1;
for ind=1:(length(S)—-1)
V(S(ind))=V(S(ind))+a*(r(ind+1)4+g*V(S(ind+1))-V(S(ind)));
end
Vv %result of TD
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clec;clear;close all; %Question 2

CID=[1 598 17 7]

win_st=mod (CID (end)+1,3)+1 Y%reward state
g=0.240.5%CID(end—1) /10 %personalized gamma
p=0.254+0.5%CID (end —2) /10 %personalized p

%here we will make the 4 transition matrices initialize prob matrices
Pl=zeros(11,11); P2=P1;P3=P1; P4=P1;

%fill out any non zero probability events with 1s. We will put the
weight in soon.

Plind=[1 234124697 11];
P2_ind=[2 3 446 6 79 10 10 11];
P3.ind=[5 6 3 7 5 8 10 8 11 10 11];
P4ind=[1 123557889 11];
Pl ind(win_st)=win_st;

P2_ind (win_st)=win_st ;

P3_ind (win_st )=win_st ;

P4_ind (win_st )=win_st ;

T(11%( —1)+(
2(11%(P2_ 1nd 1)+ (1:
P3(11%(P3_ind —1)+(1:
4(11%(P4_ind —1)+(1:
%weighted sum of the above matrices is the transition matrix for

different actions (1—>choose N, 2—>choose E etc)
Pn=p+P1+((1—p) /3) *(P2+P3+P4) ;

Pe=p+P2+((1—p) /3) *(P1+P3+P4) ;
Ps=p*P34((1—p) /3) *x(P1+P24P4) ;
Pw=p+P4+((1—p) /3) *(P1+P21P3) ;

%there might be a more intuitive way to make the transition matrices,
but this works so i’1l leave it as is

%lets make the reward matri.Note that the reward for imposible
transitions is irrelevant. However we set it to —1 here (any vale
would be fine).

R—ones(ll 11);

R(:,11)=-100;%set the penalty for reaching state 11

R(:,win_st)=10;%set the reward for reaching reward state

R(win_st , ) =0;%set the absorbing state rewards to 0;

R(11

)=



87

94

95

96

97

98

99

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

Georgios Gryparis - 00598177 Bits, Brains and Behaviours Coursework 1

%value iteration to find optimal value function and optimal policy
initialize value

V=zeros (1,11);

thr=0.0001;%number of iterations is not very sensitive to thr
d=thr +0.01;% make sure d starts larger than thr

ind=0; % index to denote number of iteration
while (d>thr)
d=0;
ind=ind+1
for s=1:11
temp=V(s);

V(s)=max ([Pn(s,:);Pe(s,:);Ps(s,:);Pw(s,:)]*(R(s,:) +gxV’));
d=max(d, abs (temp—V(s)));
end
end
round (V,2) %display rounded value function

%to find the optimal policy we find the policy that maximizes the
state values given the optimal value function calculated above
pol=["N" ”"E” ”§” "W”]|;
for s=1:11
if sT=win_st & s =11
pol_s=zeros(1,4);
temp=[Pn(s,:);Pe(s,:);Ps(s,:);Pw(s,:)|*(R(s,:) +g*xV’);
m=max (temp ) ;
pol_s(find (temp=—m) ) =1;
pol=[pol;(pol_s/nansum(pol_s))];
else
polz[pol;[” _” »_" »_" 77_77]];
end
end
[[7 7 7s17,7s27 7837 7847 785”7 786”7 ,7s7”7,7s8”,7s9” 7510”7 ,”s11”]" pol]



