
1 Random Signals and Stochastic Processes

1.1 Statistical estimation

A 1000-sample realization, x, of process Xn ∼ U(0, 1)∀n, was generated using the rand function.

Figure 1.1: Realization of Process Xn (1000 samples).

We will use the sample mean of x, m̂(x) = 1
N

∑N
n=1 x[n], to estimate the theoretical mean, m = E{X}.

First, we calculate the expected value and standard deviation of X ∼ U(0, 1), with fX(x) = u(x)− u(x− 1).1

m = E{X} =

∫ ∞
−∞

xfX(x)dx =

∫ 1

0

x dx =
1

2
= 0.5 (1)

σ =
√
V ar{X} =

√∫ ∞
−∞

(x−m)2fX(x)dx =

√∫ 1

0

(x− 0.5)2dx =

√√√√1

3

[
(x− 0.5)3

]1
0

=

√
1

12
≈ 0.2887 (2)

Using the MATLAB mean function, the sample mean is: m̂(x)≈0.4914. Thus, B(m̂(x)) = m− m̂(x)≈0.0086.

We will evaluate the accuracy of estimator m̂ = 1
N

∑N
n=1 x[n] in determining the expected value of a realized

variable X with arbitrary pdf, expected value m and standard deviation σ, in terms of three properties.

1. Consistency (Does an infinitely large sample result in perfect estimation of m?)

By the law of large numbers, lim
N→∞

1
N

∑N
n=1 x[n] = E{X} =⇒ lim

N→∞
m̂ = m =⇒ m̂ is consistent.

2. Bias (How big is the expected difference between m̂ and m?)

Bias(m̂) = E{m− m̂} = E{m− 1
N

∑N
n=1 x[n]} = m− 1

N

∑N
n=1m = 0 =⇒ m̂ is an unbiased estimator of m.

3. Standard Deviation (How spread out are the values of m̂ from E {m̂}?)

σ2
m̂ = V ar{m̂} = E{(m̂− E{m̂})2} = E

{(
1
N

∑N
n=1 x[n]−m

)2}
= 1

N2E

{[∑N
n=1(x[n]−m)

]2}
=

= 1
N2

∑N
n=1

∑N
k=1E {(x[n]−m)(x[k]−m)} = 1

N2

∑N
n=1

∑N
k=1 Cov{x[n], x[k]} (3)

Then, since {x[1], x[2], ... , x[N ]} are independent realizations of random variable X:

Cov{x[n], x[k]} =

 σ2 , n = k

0 , otherwise
=⇒ V ar{m̂} =

1

N2

N∑
n=1

V ar{X} =
σ2

N
=⇒ σm̂ =

σ√
N

(4)

The standard deviation of the sample mean is inversely proportional to the square root of the sample size.

For the vector x generated above, N = 1000, σ ≈ 0.2887⇒ σm̂ ≈ 0.2887√
1000
≈ 0.0091.

The sample mean m̂(x) obtained, 0.4914, falls within one standard deviation, σm̂, of E {m̂}, 0.5.

We will use the sample standard deviation of x, σ̂(x) =
√

1
N−1

∑N
n=1(x[n]− m̂(x))2 to estimate σ.

For X ∼ U(0, 1) we have already calculated m = 0.5, σ ≈ 0.2887.

The sample standard deviation of x, was obtained using the MATLAB std function: σ̂(x) ≈ 0.2832.

Hence, the estimation bias is: B(σ̂(x)) = σ − σ̂(x) ≈ 0.0055.

We will evaluate the accuracy of estimator σ̂ =
√

1
N−1

∑N
n=1(x[n]− m̂)2 in determining σ for a realized variable

X with arbitrary pdf, expected value m and standard deviation σ, in terms of three properties.

1. Consistency (Does an infinitely large sample result in perfect estimation of σ?)

σ̂2 = 1
N−1

∑N
n=1(x[n]− m̂)2 = N

N−1

(
1
N

∑N
n=1 x[n]2 − m̂2

)
(5)

By the law of large numbers lim
N→∞

m̂ = E{X} =⇒ lim
N→∞

m̂2 = E{X}2 and lim
N→∞

1
N

∑N
n=1 x[n]2 = E{X2}.

Thus, lim
N→∞

σ̂ =

√
lim
N→∞

σ̂2 =

√
lim
N→∞

N
N−1σ

2 = σ. Hence, σ̂ is consistent.

1u(x) will be used to denote the unit step function throughout this report

1



2. Bias (How big is the expected difference between σ̂ and σ?)

Before evaluating the bias of estimator σ̂ in determining σ we will evaluate the bias of σ̂2 in determining σ2:

E
{
σ̂2
}

= E
{

1
N−1

∑N
n=1(x[n]− m̂)2

}
= 1

N−1E
{∑N

n=1 x[n]2 − 2
∑N
n=1(m̂ · x[n]) +

∑N
n=1 m̂

2
}

=

= 1
N−1

(∑N
n=1E

{
x[n]2

}
− E

{
2Nm̂2

}
+ E

{
Nm̂2

})
= 1
N−1

(
N(σ2 +m2)-N(σ2

m̂ +m2)
)

= σ2 (6)

Hence, Bias(σ̂2) = E{σ2 − σ̂2} = σ2 − E{σ̂2} = 0 and σ̂2 is an unbiased estimator of σ2. However as the

square root is not a linear operator, E{σ̂2} = σ2 6=⇒ E{σ̂} = σ and hence we cannot conclude that σ̂ is an

unbiased estimator. The bias of the estimator depends on the distribution of X.

3. Standard Deviation (How spread out are the values of σ̂ from E {σ̂}?)

As with the bias, the standard deviation of the estimator depends on the distribution of X.

To obtain the bias and standard deviation for X ∼ U(0, 1), we use MATLAB to generate M, N-sample vectors

{x1, ... xM} and obtain the vector of sample standard deviations sN = [σ̂N (x1), ..., σ̂N (xM )].Since m̂ and σ̂

are consistent estimators, for sufficiently large M: m̂(sN )→ E{σ̂N} and σ̂(sN )→ σσ̂N . By repeating this for a

range of N, we produce estimates of the Bias(σ̂N ) vs N, Bias(σ̂N )
σ vs N and σσ̂N vs N plots.

Figure 1.2: Estimate of Bias(σ̂N ) and σσ̂N for X ∼ U(0, 1)

Hence, σ̂ is a biased estimator. However, as N increases Bias(σ̂) becomes less significant. In fact N ≥ 10 results in

Bias(σ̂) < 0.015σ, N ≥ 100 in Bias(σ̂) < 0.001σ and N ≥ 1000 in Bias(σ̂) < 0.0001σ. The standard deviation of

the sample standard deviation decreases as N increases. For the vector x generated above, N = 1000, σ ≈ 0.2887

implies that E{σ̂} ≈ 0.9999σ ≈ 0.2887 and σσ̂ ≈ 0.0041. Thus, σ̂(x) obtained, 0.2832, falls within 2σσ̂, of E{σ̂}.

We generate ten 1000-sample realizations and use {m̂(x1)..., m̂(x10)} and {σ̂(x1)..., σ̂(x10)} to estimate m and σ.

Table 1.1: Sample mean m̂(xi) and corresponding bias B(m̂(xi)) = 0.5− m̂(xi)

m̂(xi) 0.5036 0.5005 0.5068 0.4988 0.5118 0.4955 0.5055 0.5060 0.5123 0.4914

B(m̂(xi)) -0.0036 -0.0005 -0.0068 0.0012 -0.0118 0.0045 -0.0055 -0.0060 -0.0123 0.0086

max|B(σ̂(xi))|=0.0123.8 out of 10 sample means are within one σm̂ of E {m̂}. (E {m̂} = m = 0.5, σm̂ ≈ 0.0091)

Table 1.2: Sample standard deviation σ̂(xi) and corresponding bias B(σ̂(xi)) ≈ σ − σ̂(xi).

σ̂(xi) 0.2859 0.2876 0.2848 0.2820 0.2848 0.2933 0.2898 0.2921 0.2895 0.2922

B(σ̂(xi)) 0.0028 0.0011 0.0039 0.0067 0.0039 -0.0047 -0.0011 -0.0034 -0.0008 -0.0035

max|B(σ̂(xi))|=0.0067. 8 out of ten 10 values are within one σσ̂ of E {σ̂}. (E {σ̂}≈0.9999σ≈0.2887, σσ̂≈0.0041)

Figure 1.3: Plot of sample mean and sample standard deviation of each vector xi
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We will attempt to estimate the pdf of X (fX(x)) using a histogram of x and normalizing by the total area. The

histogram depends on two parameters, the number of samples considered, N , and the number of bins, ν. Hence we

represent the pdf estimator as f̂N,ν . For each N-sample vector x, let us denote the range r(x) = max(x)−min(x),

the width of each bin w = r(x)
ν , the height of each bin h[i] and the beginning of each bin, b[i] = min(x)+(i−1)w.

Note that by definition w
∑ν
i=1 h[i] = 1. The pdf estimate obtained from x can, therefore, be represented by:

f̂N,ν(x) =

ν∑
i=1

[
h[i] ·

(
u(x− b[i])− u(x− b[i]− w)

) ]
(7)

To assess estimation accuracy we use Integrated Squared Error: ISE(f̂N,ν) =
∞∫
−∞

(
fX(x)− f̂N,ν(x)

)2
dx

ISE(f̂N,ν) =

∞∫
−∞

(
f̂N,ν(x)2- 2f̂N,ν(x)fX(x)+fX(x)2

)
dx = w

ν∑
i=1

h[i]2 − 2

ν∑
i=1

(
h[i]

[
FX(x)

]b[i]+w
b[i]

)
+

∞∫
−∞

fX(x)2dx (8)

X ∼ U(0, 1), fX(x) = u(x)− u(x− 1)⇒

ISE(f̂N,ν) = w

ν∑
i=1

h[i]2-2

ν∑
i=1

(h[i] · w) +1 = w

ν∑
i=1

h[i]2- 1 and ISE(f̂N,1) = w · h[1]2- 1 =
1

w
-1 =

1

r(x)
− 1 (9)

By the Cauchy-Schwarz inequality: ISE(f̂N,ν) ≥ w

(
ν∑
i=1

h[i]

)2

− 1 = w
1

w2
− 1 =

ν

r(x)
− 1 ≥ ISE(f̂N,1) (10)

Hence, the error is minimized for ν=1. This is true when estimating a uniform distribution, as we are effectively

just estimating the lower and upper bounds. Generally, the optimal value of ν depends both on N and fX(x).

To demonstrate the effects of ν on estimating the uniform pdf, we plot histograms for N=1000 and ν={1, 20, 400}

Figure 1.4: Estimation of fX(x) for N = 1000, ν = {1, 10, 100, 500}. The error increases with increasing ν.

To investigate the effects of N on estimation accuracy, we generate M vectors x for each size N and calculate

their estimation error. For large enough M: m̂(ISE(f̂N,ν))→ E{ISE(f̂N,ν)} and σ̂()ISE(f̂N,ν))→ σ
ISE(f̂N,ν)

.

Figure 1.5: Estimation of the error expected value and standard deviation for ν = {1, 10, 100, 1000} and N < 104.

The slopes of both the expected value plot and standard deviation plot are approximately -1, for all ν used.

Hence, the expected value and standard deviation scale with N−1 and for the values of ν examined the estimate

converges, i.e. N→∞⇒ f̂N,ν→fX . To illustrate this we plot 10-bin histograms for N={100, 1000, 10000}. From

previous analysis we obtained the expected value and standard deviation of the error to compare with our results.

Figure 1.6: ̂fX(x) for ν = 10, N = {102, 103, 104}. Plot converges as N increases. |ISE −E{ISE}| < 2σISE in all cases.
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We generate a 1000-sample realization, x, of Xn ∼ N (0, 1)∀n using the randn function.

Figure 1.7: Realization of Process Xn (1000 samples).

m = 0 and σ = 1. The sample mean of x, was: m̂(x) ≈ −0.0039. Thus, B(m̂(x)) = m− m̂(x) ≈ 0.0039.

The properties used to evaluate the accuracy of m̂ are not dependent on the distribution of X, hence we do not

need to repeat our analysis. For vector x generated, with N=1000, E{m̂}=m=0 and σm̂ = σ√
N

= 1√
1000
≈ 0.0316.

Thus, the sample mean obtained is within one standard deviation of m.

The sample standard deviation of x, was obtained using the MATLAB std function: σ̂(x) ≈ 1.0247

This means that the sample standard deviation of x has estimation bias: B(σ̂(x)) = σ − σ̂(x) ≈ −0.0247.

The expected value and standard deviation of σ̂ depend on the distribution of X. For X∼N (0, 1), we generate

M, N-sample vectors {x1..., xM} and obtain the vector of sample standard deviations sN=[σ̂N (x1)..., σ̂N (xM )].

For large M: m̂(sN )→E{σ̂N}, σ̂(sN )→σσ̂N . Repeating for a range of N, we estimate Bias(σ̂N ) and σ(σ̂N ) vs N.

Figure 1.8: Plots produced by estimating E{σ̂N} and σσ̂ using MATLAB

σ̂ is a biased estimator. As N increases, Bias(σ̂) decreases. N≥10⇒Bias(σ̂)<0.03σ, N≥100⇒Bias(σ̂)<0.003σ

and N≥1000 ⇒Bias(σ̂)<0.0003σ. The standard deviation of σ̂ decreases as N increases. For x, N=1000,

σ=1⇒E{σ̂}≈0.99975σ≈1 and σσ̂≈0.02237. σ̂(x) obtained, 1.0247, within two standard deviations, σσ̂, of E{σ̂}.

We generate ten 1000-sample realizations and use {m̂(x1)..., m̂(x10)} and {σ̂(x1)..., σ̂(x10)} to estimate m and σ.

Table 1.3: Sample mean m̂(xi) and corresponding bias B(m̂(xi)) = m− m̂(xi).

m̂(xi) 0.0318 0.0246 0.0107 0.0183 0.0307 -0.0192 -0.0367 0.0175 -0.0287 -0.0280

B(m̂(xi)) -0.0318 -0.0246 -0.0107 -0.0183 -0.0307 0.0192 0.0367 -0.0175 0.0287 0.0280

max(B(m̂(xi)))=0.0367. 8 out of 10 sample means are within one σm̂ of E {m̂}. (E {m̂} = m = 0, σm̂ ≈ 0.0316).

Table 1.4: Sample standard deviation σ̂(xi) and corresponding bias B(σ̂(xi)) ≈ σ − σ̂(xi)

σ̂(xi) 1.0602 1.0309 0.9840 0.9926 0.9843 0.9890 0.9663 1.0021 1.0347 1.0335

B(σ̂(xi)) -0.0602 -0.0309 0.0160 0.0074 0.0157 0.0110 0.0337 -0.0021 -0.0347 -0.0335

max(B(σ̂(xi)))=0.0602. 5 out of 10 values are within one σσ̂ of E {σ̂}. (E {σ̂} ≈ 0.99975σ ≈ σ, σσ̂ ≈ 0.0224)

Figure 1.9: Plots produced by estimating E{σ̂N} and σσ̂ using MATLAB
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We will again estimate the pdf of X (in this case φ(x)) by plotting the histogram of x. Since X∼N (0, 1):

ISE(f̂N,ν) = w
∑ν
i=1 h[i]2 − 2

∑ν
i=1

[
h[i]
(

Φ(b[i] + w)− Φ(b[i])
)]

+
∫∞
−∞ φ(x)2dx (note that2) (11)

To determine the relationship between N and ν that minimizes ISE, we generate M, N-sample vectors {x1..., xM}

and create for each of them histograms with different numbers of bins. Then we calculate the value of ν that min-

imizes ISE for each of them. This results in a vector of optimal values of ν: νoptN = [νoptN (x1), ..., νoptN (x10)].

For large M, m̂(νoptN ) will be the value of ν that optimizes pdf estimation from a sample of size N. We compare

this to the theoretical prediction deduced by using Scott’s rule for histogram bin width3, woptN = 3.5σ̂
N1/3 , and the

fact that for x =[x[1]...,x[N]]T , with x[n]∼N (0, 1)∀n: E{max(x)-min(x)}=
∫∞
−∞(1− (1−Φ(x))N −Φ(x)N )dx. 4

Then, νoptN (predicted) = 1
wopt

E{max(x)−min(x)} = 1
3.5N

1
3

∫∞
−∞(1− (1− Φ(x))N − Φ(x)N )dx (12)

Figure 1.10: Plots of of optimal number of bins vs N. The prediction matches m̂(νoptN ).

The above plots show that the optimal number of bins increases with N. Excel uses ν ≈
√
N when plotting a

histogram. Linear regression on the log-log plot, yields νoptN ≈ 0.8N0.45, which is consistent with this practice.

To demonstrate the effects of ν on estimating φ(x), we plot estimated pdfs for N=1000, ν={1, 15, 30, 100}.

Figure 1.11: Estimation of φ(x) for N=100, ν = {1, 15, 30, 100}. The error is minimized close to 0.8 · 10000.45 ≈ 18

To investigate the effects of N on estimation accuracy, we generate M vectors x for each size N and calculate

their estimation error. For large enough M: m̂(ISE(f̂N,ν))→ E{ISE(f̂N,ν)} and σ̂()ISE(f̂N,ν))→ σ
ISE(f̂N,ν)

.

Figure 1.12: Estimate of the error expected value and standard deviation for ν = {5, 10, 20, 50, 0.8N0.45,
√
N} and N<106.

Thus, for constant ν, E{ISE} and σISE do not tend to 0 as N→∞. For ν = 0.8N0.45 or ν =
√
N , the

slope of the log-log plot for both E{ISE} and σISE is constant and negative. Hence for ν=0.8N0.45 or ν=
√
N ,

lim
N→∞

E{ISE}=0 and lim
N→∞

σISE=0 and the pdf estimate converges, i.e. lim
N→∞

fN,ν(x) = φ(x).

We plot 10-bin normalized histograms for N={100, 1000, 10000} to demonstrate that for a constant value of ν,

the pdf does not converge with increasing N. Then we plot normalized histograms for N={100, 1000, 10000} with

optimal bin size, ν = round(0.8N0.45), and demonstrate that the pdf will in this case converge. From previous

analysis we have obtained the expected value and standard deviation of the error to compare with our results.
2∫∞
−∞ φ(x)2dx= 1√

2π

∫∞
−∞

1√
2π
ex

2
dx= 1

2
√
π

∫∞
−∞ φ(x)dx= 1

2
√
π

3Scott, D. W. (1979). On Optimal and Data-Based Histograms. www.jstor.org/stable/2335182
4Tippett, L. (1925). www.jstor.org/stable/2332087
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Figure 1.13: ̂fN,ν(x) for N={102, 103, 104}, ν=10. No convergence as N increases.|ISE − E{ISE}|< 2σISE in all cases.

Figure 1.14: ̂fN,ν(x) for N={102,103,104},ν≈round(0.8N0.45).Convergence as N increases.|ISE-E{ISE}|<σISE in all cases.

1.2 Stochastic processes
We generate M N-sample realizations of the processes below and examine their stationarity and ergodicity.

rp1: v[k, n] = (x[k, n]− 0.5) · bsin(nπN ) + a · n, with a = 0.02, b = 5 and x[k, n] ∼ U(0, 1)∀k, n.5

rp2: v[k, n]=(x[k, n]-0.5)Mr[k]+Ar[k], with x[k, n]∼U(0, 1), Mr[k,n]=Mr[k]∼U(0, 1), Ar[k,n]=Ar[k]∼U(0, 1)∀k, n

rp3: v[k, n] = (x[k, n]− 0.5) · 3 + 0.5, with x[k, n] ∼ U(0, 1)∀k, n.

To study these properties, we will calculate the ensemble mean and standard deviation at each time n:

m̂ens[n] = 1
M

∑M
k=1 v[k, n] and σ̂ens[n] =

√
1

M−1
∑M
k=1(v[k, n]− m̂ens[n])2 (13)

as well as the sample mean and sample standard deviation of each realization:

m̂samp[k] = 1
N

∑N
n=1 v[k, n] and σ̂samp[k] =

√
1

N−1
∑N
n=1(v[k, n]− m̂samp[n])2 (14)

We generate 100 100-sample realizations of all processes and plot m̂ens[n] and σ̂ens[n] as a function of time n.

Figure 1.15: Ensemble mean and ensemble standard deviation for processes 1,2,3.

A random process is strict sense stationary of order N if its joint probability density functions up to order N do

not depend on time shifts. A weaker condition is that a random process is wide sense stationary if its mean does

not vary in time and the autocorrelation depends only on time lag. Thus, to show that a process is non-stationary

it is sufficient to show that the mean or standard deviation vary with time.

5Index k represents the kth realization (from a total of M). The notation ”m” is reserved for the expected value.
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For rp1, both m̂ens and σ̂ens show a trend that varies in time. Thus rp1 is not stationary. For rp2 and rp3, m̂ens

and σ̂ens vary due to noise and are otherwise constant in time. This is an indication, not a proof, that they may

be stationary. Showing that they are WSS requires checking that their autocorrelation only depends on time lag.

We generate 4 1000-sample realizations of all processes and calculate m̂samp and σ̂samp for each realization.

Table 1.5: m̂samp and σ̂samp for each realization of each process.

rp1 rp2 rp3

k m̂samp σ̂samp m̂samp σ̂samp m̂samp σ̂samp

1 9.9317 5.8888 0.0399 0.0453 0.5288 0.8595

2 10.0175 5.8609 0.9258 0.1998 0.4834 0.8551

3 9.9901 5.8710 0.9282 0.2609 0.4386 0.8521

4 9.9944 5.8575 0.1481 0.2620 0.5412 0.8899

Table 1.6: Statistics to identify ergodicity.

rp1 rp2 rp3

m̂(m̂samp) 9.9834 0.5105 0.4980

σ̂(m̂samp) 0.0365 0.4830 0.0467

m̂(σ̂samp) 5.8696 0.1920 0.8641

σ̂(σ̂samp) 0.0141 0.1020 0.0174

A process, X, is ergodic for the mean if, for any single realization of the process: lim
N→∞

m̂samp = E{x[n]} = m ∀k, n.

Firstly, we must note that the definition of ergodicity of the mean requires that the mean does not vary in time.

Secondly, since we only have access to finite samples we will be using estimators to conduct our assessment.

• rp1: sample mean does not vary significantly between realizations (m̂(m̂samp) ≈ 9.983, σ̂(m̂samp) ≈ 0.037).

However, we have already shown that the mean of rp1 varies with time. Hence, the process cannot be ergodic.

• rp2: sample mean varies significantly (m̂(m̂samp)≈0.511, σ̂(m̂samp)≈0.483). Thus, the process is not ergodic.

• rp3: We have shown that rp3 has time invariant mean and the sample mean does not show significant variation

(m̂(m̂samp) ≈ 0.498, σ̂(m̂samp) ≈ 0.047). Thus we can say that it is mean-ergodic. To conclude that it

is wide sense ergodic, we would also have to show it is WSS and that the temporal autocorrelation matches

the ensemble autocorrelation. Thus, the fact that the sample standard deviation does not vary significantly

(m̂(σ̂samp) ≈ 0.864, σ̂(σ̂samp) ≈ 0.017), is a good indication but not sufficient.

To summarize the discussion on stationarity and ergodicity:

1. rp1 is not stationary and hence not ergodic.

2. rp2 has stationary mean and standard deviation and analysis needs to be performed to assess whether it is
wide sense stationary. The temporal averages vary significantly and hence it is not ergodic.

3. rp3 has stationary mean and standard deviation and is mean-ergodic. Further analysis needs to be performed
to assess whether it is wide sense stationary and wide sense ergodic.

We will now obtain theoretical values for the mean and standard deviation of the processes examined.

rp1: v[k, n] = (x[k, n]− 0.5) · bsin(nπN ) + a · n, with a = 0.02, b = 5 and x[k, n] ∼ U(0, 1)∀k, n.

E{v[k, n]} = E{(x[k, n]− 0.5)} · bsin(nπN ) + a · n = a · n = 0.02n (15)

V ar{v[k, n]} = E{v[k, n]2} − E{v[k, n]}2 = E{((x[k, n]− 0.5) · bsin(nπN ) + a · n)2} − (an)2 =

= E{x[k, n]2 − x[k, n] + 0.25} · b2sin(nπN )2 = (E{x[k, n]2} − 0.25) · b2sin(nπN )2 =

= b2sin(nπN )2(
∫ 1

0
x2dx− 0.25) = 25

12sin(nπN )2 ⇒ σv[k,n] = 5√
12
sin(nπN ) (16)

These results are consistent with m̂ens and σ̂ens plotted above. However, as expected from the fact that
rp1 is not ergodic, the temporal statistics m̂samp and σ̂samp do not reflect the theoretical values.

rp2: v[k, n]=(x[k,n]-0.5)Mr[k]+Ar[k], with x[k,n]∼U(0, 1),Mr[k,n]=Mr[k]∼U(0, 1), Ar[k,n]=Ar[k]∼U(0, 1)∀k, n
E{v[k, n]} = E{(x[k, n]−0.5)Mr[k]}+E{Ar[k]} = E{x[k, n]Mr[k]}−0.5E{Mr[k]}+E{Ar[k]} = 0.5 (17)

V ar{v[k, n]} = E{v[k, n]2} − E{v[k, n]}2 = E{((x[k, n]− 0.5)Mr[k] +Ar[k])2} − 0.25 =

= E{(x[k, n]−0.5)2}E{M2
r }−2E{(x[k, n]-0.5)}E{Mr[k]}E{Ar[k]}+E{Ar[k]2}−0.25 =

= 1
3

∫ 1

0
(x− 0.5)2dx− 0 + 1

3 − 0.25 = 1
3

1
12 + 1

12 = 1
9 ⇒ σv[k,n] = 1

3
(18)

These results are consistent with m̂ens and σ̂ens plotted above. However, as expected from the fact that
rp2 is not ergodic, the temporal statistics m̂samp and σ̂samp do not reflect the theoretical values.

rp3: v[k, n] = (x[k, n]− 0.5)3 + 0.5 = 3x[k, n]− 1, with x[k, n]∼U(0, 1)∀k, n.

E{v[k, n]} = E{(3x[k, n]− 1} = 3E{x[k, n]} − 1 = 0.5 (19)
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V ar{v[k, n]}=E{v[k, n]2}+E{v[k, n]}2=E{9x[k, n]2-6x[k, n]+1}− 1
4 = 3−3+1− 1

4 = 3
4 ⇒ σv[k,n] =

√
3
2

(20)

Results are consistent with m̂ens and σ̂ens plotted. The sample mean and sample standard deviation reflect
the theoretical values (m̂(m̂samp)≈0.498≈0.5, m̂(σ̂samp)≈0.864≈

√
3
2 ), due to the process being ergodic.

1.3 Estimation of probability distributions

We will write an m-file that gives an estimate of the pdf of a collection of N samples. The pdf estimator will be a

histogram implemented using the MATLAB hist function and normalized by the total area. The bin number will

be round(0.8N0.45). Setting the number of bins to increase with N allows for convergence, as N →∞, for non-

uniform distributions. This specific relation was found to be optimal in estimating a standard normal distribution.
1 %varargout used to allow the user to access the pdf plot coordinates
2 %eg: [xn,yn]=pdf(x) will plot the estimate and also
3 %give the height and center of each bin
4 function varargout=pdf(v)
5 N=length(v);
6 bins=round(0.8*(Nˆ0.45));%found to be optimal for standard normal
7 [counts,xn] = hist(v,bins);
8 width=(max(v)-min(v))/bins;
9 pdf at xn=counts/(N*width);

10 bar(xn,pdf at xn,1)
11 xlabel('x')
12 ylabel('pdf.estimate(x)')
13 title(strcat('PDF Estimation (',num2str(bins),' bins)'))
14 if nargout==2
15 varargout(1)={xn};
16 varargout(2)={pdf at xn};
17 end
18 end

We test our code with N-sample stationary Gaussian processes, v[n] ∼ N (0, 1)∀n, for N = {100, 1000, 10000}.

Figure 1.16: Estimate of Gaussian process, N={102,103,104,105}. Estimate converges as N increases. φ(x) in red.

We will now use our code to estimate rp3, the only process that was shown to have stationary mean and be

mean-ergodic. Before estimating, we will calculate the theoretical pdf and use it to compare our results.

v[k, n] = (x[k, n]− 0.5)3 + 0.5 = 3x[k, n]− 1⇒ Fv[k,n](v) = P (v[k, n] ≤ v) = P (x[k, n] ≤ v+1
3 ) = Fx[k,n](

v+1
3 ).

⇒ fv[k,n](v) =
dFv[k,n](v)

dv =
dFx[k,n](

v+1
3 )

d( v+1
3 )

· d(
v+1
3 )

dv = 1
3fx[k,n](

v+1
3 ) = u(v+1)−u(v−2)

3
(21)

The autocorrelation function is given by:

E{v[k, n1]v[k, n2]}=9E{x[k, n1]x[k, n2]}-3E{x[k, n1]-x[k, n2]}+1=9E{x[k, n1]x[k, n2]}-2=

1 , for n1 = n2

1
4 , otherwise

(22)

Hence, the autocorrelation depends only on time difference and rp3 is WSS.

Figure 1.17: Estimate of rp3, N={102, 103, 104}. The estimate converges as N increases. Theoretical pdf in red.
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The function created cannot estimate non-stationary processes as it inherently assumes that the pdf is time

invariant. It is, also, only applicable to ergodic processes as it assumes that the distribution of values in a

single realization is equivalent to the pdf. In cases where non-stationarity occurs only due to variation of the

deterministic component of the signal, we can use a filter to reveal the deterministic change and account for it.

Consider example: x[n]=u[n-t]+w[n], where w[n]∼N (0, 1), t=500 and n≤1000⇒fx[n](x)=φ(x− u(n− 500)).

Estimating fx[n](x), we separate the deterministic xd[n], from the zero-mean stochastic part,xst[n]=x[n]− xd[n].

Then, fx[n](x)=fxst[n](x− xd[n]) and we can use our function to estimate fxst[n]. Our estimate will be

f̂x[n](x)=f̂xst[n](x− x̂d[n]). We generate the process and estimate xd[n] using a moving average filter.

Figure 1.18: Estimate of xd[n] using MA filter of length 50,100,200 (theoretical in purple, value used in estimations: 100)

and estimate of pdf of zero mean stochastic part of process (theoretical in red).

Then we can plot f̂x[n](x) for different n and see how they align with the theoretical pdf: fx[n](x)=φ(x-u(n-500)).

Figure 1.19: f̂x[n](x) for n={50, 480, 520, 950} (theoretical in red).

Most of the error in the filter comes from the step response of the MA filter and becomes more significant closer

to 500. Additionally, this method is very narrow in application as it tackles only deterministic changes in mean.

As such, it cannot be applied to processes where the variance changes in time (such as rp1).

Finally, we use our method to tackle the process: x[n]=sin( 2nπ
N ) + w[n], where w[n]∼U(0, 1) and n≤N=1000.

Then, x[n] ∼ U(sin( 2nπ
N ), sin( 2nπ

N ) + 1). Note that in this case, the theoretical results are: xd[n]=sin( 2nπ
N )+0.5

and xst[n] ∼ U(−0.5, 0.5) with the transformation done to ensure that the stochastic part is zero-mean.

Figure 1.20: Estimate of xd[n] using MA filter of length 50, 100, 200 (theoretical in purple, value in estimations: 100) and
estimate of pdf of zero mean stochastic part of process (theoretical in red).

Figure 1.21: f̂x[n](x) for n={200, 500, 800} (theoretical in red).
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